Schlagwort-Archive: Machine Learning

Google’s DeepMind AI can accurately detect 50 types of eye disease just by looking at scans

Mustafa Suleyman 1831_preview (1)DeepMind cofounder Mustafa Suleyman.DeepMind
  • Google’s artificial intelligence company DeepMind has published „really significant“ research showing its algorithm can identify around 50 eye diseases by looking at retinal eye scans.
  • DeepMind said its AI was as good as expert clinicians, and that it could help prevent people from losing their sight.
  • DeepMind has been criticised for its practices around medical data, but cofounder Mustafa Suleyman said all the information in this research project was anonymised.
  • The company plans to hand the technology over for free to NHS hospitals for five years, provided it passes the next phase of research.

Google’s artificial intelligence company, DeepMind, has developed an AI which can successfully detect more than 50 types of eye disease just by looking at 3D retinal scans.

DeepMind published on Monday the results of joint research with Moorfields Eye Hospital, a renowned centre for treating eye conditions in London, in Nature Medicine.

The company said its AI was as accurate as expert clinicians when it came to detecting diseases, such as diabetic eye disease and macular degeneration. It could also recommend the best course of action for patients and suggest which needed urgent care.

OCT scanA technician examines an OCT scan.DeepMind

What is especially significant about the research, according to DeepMind cofounder Mustafa Suleyman, is that the AI has a level of „explainability“ that could boost doctors‘ trust in its recommendations.

„It’s possible for the clinician to interpret what the algorithm is thinking,“ he told Business Insider. „[They can] look at the underlying segmentation.“

In other words, the AI looks less like a mysterious black box that’s spitting out results. It labels pixels on the eye scan that corresponds to signs of a particular disease, Suleyman explained, and can calculate its confidence in its own findings with a percentage score. „That’s really significant,“ he said.

DeepMind's algorithm analysing an OCT eye scanDeepMind’s AI analysing an OCT scan.DeepMind

Suleyman described the findings as a „research breakthrough“ and said the next step was to prove the AI works in a clinical setting. That, he said, would take a number of years. Once DeepMind is in a position to deploy its AI across NHS hospitals in the UK, it will provide the service for free for five years.

Patients are at risk of losing their sight because doctors can’t look at their eye scans in time

British eye specialists have been warning for years that patients are at risk of losing their sight because the NHS is overstretched, and because the UK has an ageing population.

Part of the reason DeepMind and Moorfields took up the research project was because clinicians are „overwhelmed“ by the demand for eye scans, Suleyman said.

„If you have a sight-threatening disease, you want treatment as soon as possible,“ he explained. „And unlike in A&E, where a staff nurse will talk to you and make an evaluation of how serious your condition is, then use that evaluation to decide how quickly you are seen. When an [eye] scan is submitted, there isn’t a triage of your scan according to its severity.“

OCT scanA patient having an OCT scan.DeepMind

Putting eye scans through the AI could speed the entire process up.

„In the future, I could envisage a person going into their local high street optician, and have an OCT scan done and this algorithm would identify those patients with sight-threatening disease at the very early stage of the condition,“ said Dr Pearse Keane, consultant ophthalmologist at Moorfields Eye Hospital.

DeepMind’s AI was trained on a database of almost 15,000 eye scans, stripped of any identifying information. DeepMind worked with clinicians to label areas of disease, then ran those labelled images through its system. Suleyman said the two-and-a-half project required „huge investment“ from DeepMind and involved 25 staffers, as well as the researchers from Moorfields.

People are still worried about a Google-linked company having access to medical data

Google acquired DeepMind in 2014 for £400 million ($509 million), and the British AI company is probably most famous for AlphaGo, its algorithm that beat the world champion at the strategy game Go.

While DeepMind has remained UK-based and independent from Google, the relationship has attracted scrutiny. The main question is whether Google, a private US company, should have access to the sensitive medical data required for DeepMind’s health arm.

DeepMind was criticised in 2016 for failing to disclose its access to historical medical data during a project with Royal Free Hospital. Suleyman said the eye scans processed by DeepMind were „completely anonymised.“

„You can’t identify whose scans it was. We’re in quite a different regime, this is very much research, and we’re a number of years from being able to deploy in practice,“ he said.

Suleyman added: „How this has the potential to have transform the NHS is very clear. We’ve been very conscious that this will be a model that’s published, and available to others to implement.

„The labelled dataset is available to other researchers. So this is very much an open and collaborative relationship between equals that we’ve worked hard to foster. I’m proud of that work.“


Microsoft wants regulation of facial recognition technology to limit ‚abuse‘

Facial recognition put to the test
Facial recognition put to the test

Microsoft has helped innovate facial recognition software. Now it’s urging the US government to enact regulation to control the use of the technology.

In a blog post, Microsoft (MSFT)President Brad Smith said new laws are necessary given the technology’s „broad societal ramifications and potential for abuse.“

He urged lawmakers to form „a government initiative to regulate the proper use of facial recognition technology, informed first by a bipartisan and expert commission.“

Facial recognition — a computer’s ability to identify or verify people’s faces from a photo or through a camera — has been developing rapidly. Apple (AAPL), Google (GOOG), Amazon and Microsoft are among the big tech companies developing and selling such systems. The technology is being used across a range of industries, from private businesses like hotels and casinos, to social media and law enforcement.

Supporters say facial recognition software improves safety for companies and customers and can help police track police down criminals or find missing children. Civil rights groups warn it can infringe on privacy and allow for illegal surveillance and monitoring. There is also room for error, they argue, since the still-emerging technology can result in false identifications.

The accuracy of facial recognition technologies varies, with women and people of color being identified with less accuracy, according to MIT research.

„Facial recognition raises a critical question: what role do we want this type of technology to play in everyday society?“ Smith wrote on Friday.

Smith’s call for a regulatory framework to control the technology comes as tech companies face criticism over how they’ve handled and shared customer data, as well as their cooperation with government agencies.

Last month, Microsoft was scrutinized for its working relationship with US Immigration and Customs Enforcement. ICE had been enforcing the Trump administration’s „zero tolerance“ immigration policy that separated children from their parents when they crossed the US border illegally. The administration has since abandoned the policy.

Microsoft urges Trump administration to change its policy separating families at border

Microsoft wrote a blog post in January about ICE’s use of its cloud technology Azure, saying it could help it „accelerate facial recognition and identification.“

After questions arose about whether Microsoft’s technology had been used by ICE agents to carry out the controversial border separations, the company released a statement calling the policy „cruel“ and „abusive.“

In his post, Smith reiterated Microsoft’s opposition to the policy and said he had confirmed its contract with ICE does not include facial recognition technology.

Amazon(AMZN) has also come under fire from its own shareholders and civil rights groups over local police forces using its face identifying software Rekognition, which can identify up to 100 people in a single photo.

Some Amazon shareholders coauthored a letter pressuring Amazon to stop selling the technology to the government, saying it was aiding in mass surveillance and posed a threat to privacy rights.

Amazon asked to stop selling facial recognition technology to police

And Facebook (FB) is embroiled in a class-action lawsuit that alleges the social media giant used facial recognition on photos without user permission. Its facial recognition tool scans your photos and suggests you tag friends.

Neither Amazon nor Facebook immediately responded to a request for comment about Smith’s call for new regulations on face ID technology.

Smith said companies have a responsibility to police their own innovations, control how they are deployed and ensure that they are used in a „a manner consistent with broadly held societal values.“

„It may seem unusual for a company to ask for government regulation of its products, but there are many markets where thoughtful regulation contributes to a healthier dynamic for consumers and producers alike,“ he said.

Machine Learning – Basics – Einsatzgebiete – Technik

Machine Learning, Deep Learning, Cognitive Computing – Technologien der Künstlichen Intelligenz verbreiten sich rasant. Hintergrund ist, dass heute die Rechen- und Speicherkapazitäten zur Verfügung stehen, die KI-Szenarien möglich machen. Ein Überblick.
  • Machine Learning hilft, Muster in großen Datenbeständen zu erkennen und daraus Erkenntnisse zu gewinnen
  • Die Einsatzszenarien reichen von der Spamanalyse über Stauprognosen bis hin zur medizinischen Diagnostik
  • Technische Grundlage ist eine Cloud-basierte Digital Infrastructure Platform,3330413,3330418,3330420

Künstliche Intelligenz und Machine Learning (ML) sind keine neuen Technologien, doch im praktischen Einsatz spielen sie erst jetzt eine wichtige Rolle. Woran liegt das? Wichtigste Voraussetzung für lernende Systeme und entsprechende Algorithmen sind ausreichende Rechenkapazitäten und der Zugriff auf riesige Datenmengen – egal ob es sich um Kunden-, Log- oder Sensordaten handelt. Sie sind für das Training der Algorithmen und die Modellbildung unverzichtbar – und sie stehen mit Public- und Private-Cloud-Infrastrukturen zur Verfügung.

Bildanalyse und -erkennung ist das wichtigste Machine-Learning-Thema, doch die Spracherkennung und -verarbeitung ist schwer im Kommen.
Bildanalyse und -erkennung ist das wichtigste Machine-Learning-Thema, doch die Spracherkennung und -verarbeitung ist schwer im Kommen.
Foto: Crisp Research, Kassel


Die Analysten von Crisp Research sind im Rahmen einer umfassenden Studie gemeinsam mit The unbelievable Machine Company und Hewlett-Packard Enterprise (HPE) der Frage nachgegangen, welche Rolle Machine Learning heute und in Zukunft im Unternehmenseinsatz spielen wird. Dabei zeigt sich, dass deutsche Unternehmen hier schon recht weit fortgeschritten sind. Bereits ein Fünftel setzt ML-Technologien aktiv ein, 64 Prozent beschäftigen sich intensiv mit dem Thema und vier von fünf Befragten sagen sogar, ML werde irgendwann eine der Kerntechnologien des vollständig digitalisierten Unternehmens sein.

Muster erkennen und Vorhersagen treffen

ML-Algorithmen helfen den Menschen, Muster in vorhandenen Datenbeständen zu erkennen, Vorhersagen zu treffen oder Daten zu klassifizieren. Mit mathematischen Modellen können neue Erkenntnisse auf Grundlage dieser Muster gewonnen werden. Das gilt für viele Lebens- und Geschäftsbereiche. Oftmals profitieren Internet-Nutzer längst davon, ohne über die Technologie im Hintergrund nachzudenken.

Das Spektrum der Anwendungen reicht von Musik- und Filmempfehlungen im privaten Umfeld bis hin zur Verbesserung von Marketing-Kampagnen, Kundenservices oder auch Logistikrouten im geschäftlichen Bereich. Dafür steht ein breites Spektrum an ML-Verfahren zur Verfügung, darunter Lineare Regression, Instanzenbasiertes Lernen, Entscheidungs-Baum-Algorithmen, Bayesche Statistik, Clusteranalyse, Neuronale Netzwerke, Deep Learning und Verfahren zur Dimensionsreduktion.

Die Anwendungsbereiche sind vielfältig und teilweise bekannt. Man denke etwa an Spam-Erkennung, die Personalisierung von Inhalten, das Klassifizieren von Dokumenten, Sentiment-Analysen, Prognosen der Kundenabwanderung, E-Mail-Klassifizierung, Analyse von Upselling-Möglichkeiten, Stauprognosen, Genomanalysen, medizinische Diagnostik, Chatbots und vieles mehr. Für nahezu alle Branchen und Unternehmenstypen ergeben sich also Gelegenheiten.

Moderne IT-Plattformen unterstützen KI

Machine Learning ist laut Crisp Research idealerweise Bestandteil einer modernen, skalierungsfähigen und flexiblen IT-Infrastruktur – einer „Digital Infrastructure Platform“. Diese zeichnet sich durch Elastizität, Automatisierung, eine API-basierte Architektur und Agilität aus. Eine solche Plattform ist in der Regel Cloud-basiert aufgesetzt und dient als Grundlage für die Entwicklung und den Betrieb neuer digitaler Anwendungen und Prozesse. Sie bietet eine offene Architektur, Programmierschnittstellen (APIs), um externe Services zu integrieren, die Unterstützung von DevOps-Konzepten sowie moderne Methoden für kurze Release- und Innovationszyklen.

Die Verarbeitung und Analyse großer Datenmengen ist eine Kernaufgabe einer solchen Digital Infrastructure Platform. Deshalb müssen die IT-Verantwortlichen Sorge tragen, dass ihre IT mit unterschiedlichen Verfahren der Künstlichen Intelligenz umgehen kann. Server-, Storage- und Netzwerk-Infrastrukturen müssen auf neue ML-basierte Workloads ausgelegt sein. Auch das Daten-Management muss vorbereitet sein, damit ML-as-a-Service-Angebote in der Cloud genutzt werden können.

Im Kontext von ML haben sich in den vergangenen Monaten auch alternative Hardwarekomponenten durchgesetzt, etwa GPU-basierte Cluster von Nvidia, Googles Tensor Processing Unit (TPU) oder IBMs TrueNorth-Prozessor. Unternehmen müssen sich entscheiden, ob sie hier selbst investieren oder die Angebote entsprechender Cloud-Provider nutzen wollen.

Einer der großen Anwendungsbereiche für ML ist die Spracherkennung und -verarbeitung. Amazons Alexa zieht gerade in die Haushalte ein, Microsoft, Google, Facebook und IBM haben hier einen Großteil ihrer Forschungs- und Entwicklungsgelder investiert sowie spezialisierte Firmen zugekauft. Es lässt sich absehen, dass natürlichsprachige Kommunikation an der Kundenschnittstelle selbstverständlicher wird. Auch die Bedienung von digitalen Produkten und Enterprise-IT-Lösungen wird via Sprachbefehl möglich sein. Das hat sowohl Auswirkungen auf das Customer-Frontend als auch auf das IT-Backend.

Niedrige Einstiegshürden in Machine Learning

Da die großen Cloud-Anbieter ML-Services und -Produkte in ihr Leistungsportfolio aufgenommen haben, ist es für Anwender relativ einfach, einen Einstieg zu finden. Amazon Machine Learning, Microsoft Azure Machine Learning, IBM Bluemix und Google Machine Learning erlauben einen kostengünstigen Zugang zu entsprechenden Diensten über die Public Cloud. Anwender brauchen also keinen eigenen Supercomputer, kein Team von Statistikexperten und kein dediziertes Infrastruktur-Management mehr. Mit ein paar Kommandos über die APIs der großen Public-Cloud-Provider können sie loslegen.

Anwender brauchen vor allem Hilfe bei der Datenexploration.
Anwender brauchen vor allem Hilfe bei der Datenexploration.
Foto: Crisp Research, Kassel


Sie finden dort unterschiedliche Machine-Learning-Verfahren sowie Dienste und Tools wie etwa grafische Programmiermodelle und Storage-Dienste vor. Je mehr sie sich darauf einlassen, desto größer wird allerdings das Risiko eines Vendor-Lock-ins. Deshalb sollten sich Anwender vor dem Start Gedanken über ihre Strategie machen. IT-Dienstleister und Managed-Service-Provider können ebenso ML-Systeme und Infrastrukturen bereitstellen und betreiben, so dass Unabhängigkeit von den Public-Cloud-Providern und ihren SLAs ebenso möglich ist.

Verschiedene Spielarten der KI

Machine Learning, Deep Learning, Cognitive Computing – derzeit kursieren eine Reihe von KI-Begriffen, deren Abgrenzung voneinander nicht ganz einfach ist. Crisp Research wählt dafür die Dimensionen „Clarity of Purpose“ (Orientierung am Einsatzweck) und „Degree of Autonomy“ (Grad der Autonomie). ML-Systeme sind derzeit größtenteils auf Einsatzzwecke hin entwickelt und trainiert. Sie erkennen beispielsweise im Fertigungsprozess fehlerhafte Produkte im Rahmen einer Qualitätskontrolle. Ihre Aufgabe ist klar umrissen, es gibt keine Autonomie.

Deep-Learning-Systeme hingegen sind in der Lage, mittels Neuronaler Netze eigenständig zu lernen. Simulierte Neuronen werden in vielen Schichten übereinander modelliert und angeordnet. Jede Ebene des Netzwerks erfüllt dabei eigenständig bestimmte Aufgaben, etwa das Erkennen von Kanten. Diese Information wird eigenständig an die nächste Ebene weitergegeben und fließt dort in die Verarbeitung ein. Im Zusammenspiel mit großen Mengen an Trainingsdaten lernen solche Netzwerke, bestimmte Aufgaben zu erledigen – etwa das Identifizieren von Krebszellen in medizinischen Bildern.

Deep-Learning-Systeme arbeiten autonomer

Deep-Learning-Systeme arbeiten also deutlich autonomer als ML-Systeme, da die Neuronalen Netzwerke darauf trainiert werden, selbständig zu lernen und Entscheidungen zu treffen, die von außen nicht unbedingt nachvollziehbar sind.

Als dritte Spielart der KI gilt das Cognitive Computing, das insbesondere von IBM mit seiner Watson-Technologie propagiert wird. Solche Systeme zeichnen sich dadurch aus, dass sie in einer Assistenzfunktion oder gar als Ersatz des Menschen Aufgaben übernehmen und Entscheidungen treffen und dabei mit Ambiguität und Unschärfe umgehen können. Als Beispiele können das Schadensfall-Management in einer Versicherung dienen, eine Service-Hotline oder die Diagnostik im Krankenhaus.

Auch wenn hier bereits ein hohes Maß an Autonomie erreicht werden kann, ist der Weg zu echter Künstlicher Intelligenz mit autonomen kognitiven Fähigkeiten noch weit. Die Wissenschaft beschäftigt sich aber intensiv damit und streitet darüber, ob und wann dieses Ziel erreicht werden kann. Derweil sind Unternehmen gut beraten, sich mit den machbaren Use Cases zu beschäftigen, von denen es bereits eine Menge gibt.

Im Zuge des Digitalisierungstrends kommt in vielen Unternehmen Analytics auf die Tagesordnung – und damit auch Machine Learning und Deep Learning. Jetzt geht es darum, den Datenschatz zu heben.
  • Viele Unternehmen haben Data Lakes mit strukturierten und unstrukturierten Daten aufgebaut. Jetzt gilt es, etwas daraus zu machen
  • Einsatzgebiete für Machine Learning sind etwa Prozessverbesserungen sowie eine bessere Kundenansprache und ein möglichst effizienter Support
  • In vielen Branchen ist der Abstand zwischen Vorreitern und Nachzüglern riesig

Die Phantasien und Visionen rund um die digitale Zukunft kennen derzeit keine Grenzen. Vollautomatisierte Produktionsstraßen, autonome Verkehrssysteme, intelligente digitale Assistenten – es vergeht kaum ein Tag, an dem nicht neue Szenarien diskutiert werden. Dadurch fühlen sich viele Firmen unter Druck gesetzt. Sie arbeiten am „digitalen Unternehmen“ und entdecken ihre Daten als Grundlagen für neue Geschäftsmodelle und Services. So gewinnt Analytics an Bedeutung – und mit der Analytics-Strategie kommen KI und Machine Learning (ML) auf die Tagesordnung.

Aus diesen Gründen beschäftigen sich Anwender mit Machine Learning.
Aus diesen Gründen beschäftigen sich Anwender mit Machine Learning.
Foto: Crisp Research


IT- und Digitalisierungsentscheider vermuten ein enormes Potenzial hinter dem Thema Machine Learning. Eine Umfrage, die das Analystenhaus Crisp Research unterstützt von The unbelievable Machine Company und Hewlett-Packard Enterprise (HPE) auf den Weg gebracht hat, zeigt, dass nur drei Prozent der knapp 250 Befragten ML für einen Marketing-Hype halten. Ein Drittel bezeichnet ML-Verfahren in begrenzten Einsatzbereichen als sinnvoll, sogar 43 Prozent sind überzeugt davon, dass ML ein wichtiger Aspekt künftiger Big-Data- und Analytics-Strategien wird.

Wie die Initiatoren der Studie feststellen, ist das kein überraschendes Ergebnis. Die meisten Unternehmen haben im großen Stil in Big-Data-Infrastrukturen und eigene Data Lakes investiert, um ihre Unternehmensdaten zusammenzuführen und auswertbar zu machen. ML ermöglicht einen hohen Automationsgrad in der Datenanalyse und hilft somit, den verborgenen Schatz zu heben. Daten gelten als großes Asset, doch den Beweis dafür haben viele Firmen noch nicht gebracht. Technologien und Use Cases rund um Machine Learning versprechen Abhilfe.

Immenses Innovationspotenzial

Immerhin 16 Prozent der befragten sehen ML sogar als neue „Kerntechnologie eines vollständig digitalen Unternehmens“. Das Innovations- und Gestaltungspotenzial scheint also immens, wenngleich viele Probleme rund um Datenqualität, Governance, API-Management, Infrastruktur und vor allem Personal den Trend noch bremsen.

Rund 34 Prozent der Befragten beschäftigen sich mit ML, weil sie ihre internen Prozesse in der Produktion, Logistik oder im Qualitätsmanagement verbessern wollen. Sie erheben beispielsweise Daten im Produktionsablauf, um ihre Fertigung optimieren zu können. Fast ebenso viele wollen Initiativen rund um die Customer Experience vorantreiben – etwa in E-Commerce, Marketing oder im Bereich der Portale und Apps. Sie versprechen sich davon beispielsweise eine personalisierte Kundenansprache, um Produkte oder Dienste zielgerichteter an den Konsumenten bringen zu können. Mit 19 Prozent ist die Gruppe derer, die Wartungs- und Supportleistungen optimieren wollen (Predictive Maintenance), etwas kleiner. Hinzu kommen Betriebe, die sich grundsätzlich mit neuen Technologien beschäftigen (28 Prozent) oder durch Berater und Analysten auf das Thema aufmerksam geworden sind (27 Prozent).

Elementar für selbstfahrende Autos

Das Nutzungsverhalten von ML ist nicht nur zwischen, sondern auch innerhalb der Branchen sehr unterschiedlich ausgeprägt. In der Automobilbranche etwa gibt es große Abstände zwischen den Vorreitern und den Nachzüglern. Für die Entwicklung und Produktion selbstfahrender Autos sind Bild- und Videoanalyse in Echtzeit sowie statistische Verfahren und mathematische Modelle aus Machine Learning und Deep Learning weit verbreitet. Einige Verfahren werden auch dazu verwendet, Fabrikationsfehler in der Fertigung zu erkennen.

Der Anteil der Innovatoren, die ML bereits in weiten Teilen einsetzen, ist in der Automobilbranche mit rund 20 Prozent am größten. Demgegenüber stehen allerdings 60 Prozent, die sich zwar mit ML beschäftigen, aber noch in der Evaluierungs- und Planungsphase stecken. So zeigt sich, dass in der Autobranche einige Leuchttürme das Bild prägen, von einer flächendeckenden Adaption aber nicht die Rede sein kann.

Status der Branchen bei der Einführung von Machine-Learning-Technologien
Status der Branchen bei der Einführung von Machine-Learning-Technologien
Foto: Crisp Research


Auch die Maschinen- und Anlagenbauer stecken noch zur Hälfte (53 Prozent) in der Evaluierungs- und Planungsphase. Ein knappe Drittel nutzt ML in ausgewählten Anwendungsbereichen produktiv und 18 Prozent bauen derzeit Prototypen. Weiter sind die Handels- und Konsumgüterfirmen, die zu 44 Prozent dabei sind, ML in ersten Projekten und Prototypen zu erproben. Das überrascht insofern nicht, als diese Firmen in der Regel gute gepflegte Datenbestände haben und viel Erfahrung mit Business Intelligence und Data Warehouses besitzen. Gelingt es ihnen, Preisstrategien, Warenverfügbarkeiten oder Marketing-Kampagnen messbar zu verbessern, wird ML als willkommenes Innovationsinstrument bestehender Big-Data-Strategien gesehen.

Gleiches gilt für die IT-, TK- und Medienbranche: Dort kommen ML-Verfahren etwa zum Ausspielen von Online-Werbung, Berechnen von Kaufwahrscheinlichkeiten (Conversion Rates) oder dem Personalisieren von Webinhalten und Einkaufsempfehlungen längst zum Einsatz. Bei den professionellen Dienstleistern spielen das Messen und Verbessern der Kundenbindung, der Dienstleistungsqualität und der Termintreue eine wichtige Rolle, sind das doch die wettbewerbsdifferenzierenden Faktoren.

IT-Abteilungen sind zuständig

Knapp 60 Prozent der befragten Entscheider gaben an, ihre IT-Abteilung sei federführend zuständig, wenn es um ML-Projekte gehe. Den Studienautoren von Crisp zufolge liegt das an der hohen technologischen Komplexität des Themas. Neben mathematischen und statistischen Skills ist demnach auch eine große Bandbreite an Fertigkeiten im Bereich der IT-Operations gefragt. Hinzu kommen die BI- und Analytics-Fähigkeiten, die hier oftmals angesiedelt sind.

Doch auch Fachabteilungen wie Logistik und Produktion sind mit im Boot, weil sie in der Regel die Prozessverbesserungs- und IoT-Szenarien vorantreiben. Die großen Mengen an Maschinen-, Produktions-, Logistik- sowie sonstigen Sensor- und Log-Daten müssen auf Muster und Korrelationen hin abgefragt werden – eine Aufgabe für Fertigung und Logistik.

Und schließlich sind auch Kundenservice und -support führende Instanzen, wenn es um die Einführung von ML geht. Sie wollen die personalisierte Kundeninteraktion vorantreiben und sammeln in ihren Bereichen die Text-, Bild- und Audiodaten, die das Potenzial für Analysen bieten. Interessant an der Umfrage ist indes, dass Marketing und Kommunikation von ML oft nichts wissen wollen, obwohl sie reichlich Einsatzszenarien hätten. Sie könnten etwa Kundenbeziehungen auswerten und die Kundenbindung verbessern, automatisiertes Medien-Monitoring vorantreiben oder das Social Web mit Sentiment-Analysen bearbeiten. All das findet aber relativ selten statt, was Crisp Research mit der traditionell „passiven, technologieagnostischen Rolle“ dieser Abteilungen begründet. Marketing- und Kommunikationsabteilungen treten demnach meist als „Anforderer“ und interne Kunden auf, nicht als diejenigen, die tiefer in Technologien einsteigen.

Welche Machine-Learning-Funktionen benötigen Unternehmen wofür? Und wann kommen welche Lernstile, Frameworks, Programmiersprachen und Algorithmen zum Einsatz? Meistens beginnen Firmen mit Bildanalyse und -erkennung.
  • Bild- und Spracherkennung sind die wichtigsten Anwendungen im Bereich Machine Learning
  • Geht es um die Plattformauswahl, wird die Public Cloud zunehmend wichtig
  • Grafikprozessoren setzen sich im Bereich Deep Learning durch

Wie die Analysten von Crisp Research im Rahmen einer umfassenden Studie gemeinsam mit The unbelievable Machine Company und Hewlett-Packard Enterprise (HPE) schreiben, gibt die Mehrheit der rund 250 befragten IT-Entscheider an, mit der Bildanalyse und -erkennung in das komplexe Thema Machine Learning (ML) einzusteigen. So werden beispielsweise in Industrieunternehmen Fremdkörper auf Förderbändern identifiziert, fehlerhafte Einfärbungen von Produkten entdeckt oder von autonomen Fahrzeugen Straßenschilder erkannt.

Diese Machine-Learning-Funktionen nutzen die Anwender.
Diese Machine-Learning-Funktionen nutzen die Anwender.
Foto: Crisp Research, Kassel


Wichtig sind ML-Verfahren auch zur Sprachsteuerung und -erkennung (42 Prozent). Eng damit verbunden sind Natural Language Processing und Textanalyse – also das semantische Erfassen von Sprachinhalten und Texten. Heute beschäftigen sich 35 Prozent der Unternehmen damit, Tendenz steigend. Hintergrund ist, dass konversationsbasierte Benutzerschnittstellen derzeit einen Aufschwung erleben.

Chatbots, Gesichtserkennung, Sentiment-Analyse und mehr

Machine Learning kommt außerdem bei rund einem Drittel der Befragten im Zusammenhang mit der Entwicklung digitaler Assistenten, sogenannter Bots zum Einsatz. Weitere Einsatzgebiete sind Gesichtserkennung, die Sentiment-Analyse und besondere Verfahren der Mustererkennung – oft in einem unternehmens- oder branchenspezifischen Kontext. Die Spracherkennung ist vor allem für Marketingentscheider interessant, da digitale Assistenten für die Automatisierung von Call-Center-Abläufen oder die Echtzeit-Kommunikation mit dem Kunden an Bedeutung gewinnen. Auch die Personalisierung von Produktempfehlungen ist ein wichtiger Use-Case.

Ein Blick auf die Nutzungsszenarien von ML-Technologien zeigt, dass Bildanalyse und -erkennung heute weit vorne rangieren, doch die Zukunft gehört eher der Sprachsteuerung und – erkennung, ebenso der Textanalyse und Natural Language Processing (NLP). Insgesamt werden ML-Technologien auf breiter Front an Bedeutung gewinne, auch etwa im Bereich der Videoanalyse, der Sentiment-Analyse, der Gesichtserkennung sowie beim Einsatz intelligenter Bots.

Schaut man auf die einzelnen Unternehmensbereiche, so wird deutlich, dass sich die für Customer Experience Management zuständigen Einheiten ML-Technologien vor allem im Bereich der Kundensegmentierung, der personalisierten Produktempfehlung, der Spracherkennung und teilweise auch der Gesichtserkennung bedienen. IT-Abteilungen treiben damit E-Mail-Klassifizierung, Spam-Erkennung, Diagnosesysteme und das Klassifizieren von Dokumenten voran. Die Produktion ist vor allem auf Prozessverbesserungen aus, während Kundendienst und Support ihre Diagnoseysteme vorantreiben und an automatisierten Lösungsempfehlungen arbeiten. Auch Call-Center-Gespräche werden bereits analysiert, teilweise auch mit der Absicht, positive und negative Äußerungen der Kunden zu erkennen (Sentiment-Analyse).

Auch die Bereiche Finance und Human Resources sowie das Management generell nutzen vermehrt ML-Technologien. Wichtigstes Einsatzgebiet sind hier das Risiko-Management sowie Forecasting und Prognosen. Im HR-Bereich werden auch Trainingsempfehlungen automatisiert erstellt, Lebensläufe überprüft und das Talent-Management vorangetrieben. Im zentralen Einkauf und dem Management der Lieferanten ist die Digital Supply-Chain-Verbesserung das Kernaufgabengebiet von ML-technologie. Vermehrt werden hier auch Demand Forecastings ermittelt, Risiken im Zusammenhang mit bestimmten Lieferanten analysiert und generell Entscheidungsprozesse digital unterstützt.

Machine-Learning-Plattformen und -Produkte

Geht es um die Auswahl von Plattformen und -Produkten, spielen Lösungen aus der Public Cloud eine zunehmend wichtige Rolle (Machine Learning as a Service). Um Komplexität aus dem Wege zu gehen und weil die großen Cloud-Provider auch die maßgeblichen Innovatoren auf diesem Gebiet sind, entscheiden sich viele Anwender für diese Cloud-Lösungen. Während 38,1 der Befragten Lösungen aus der Public-Cloud bevorzugen, wählen 19,1 Prozent proprietäre Lösungen ausgesuchter Anbieter und 18,5 Prozent Open-Source-Alternativen. Der Rest verfolgt entweder eine hybride Strategie (15,5 Prozent) oder hat sich noch keine Meinung dazu gebildet (8,8 Prozent).

Welche Cloud-Angebote zu Machine Learning sind im Einsatz?
Welche Cloud-Angebote zu Machine Learning sind im Einsatz?
Foto: Crisp Research


Unter den Cloud-basierten Lösungen hat AWS den höchsten Bekanntheitsgrad: 71 Prozent der Entscheider geben an, dass ihnen Amazon in diesem Kontext bekannt sei. Auch Microsoft, Google und IBM sind den Umfrageteilnehmern zu mehr als zwei Drittel im ML-Umfeld ein Begriff. Interessanterweise nutzen aber nur 17 Prozent der befragten die AWS-Cloud-Dienste im Kontext der Evaluierung, Projektierung sowie im produktiven Betrieb für ML. Jeweils rund ein Drittel der Befragten beschäftigt sich indes mit IBM Watson, Microsoft Azure oder der Google Cloud Machine Learning Plattform.

Die Analysten nehmen an, dass dies viel mit den Marketing-Anstrengungen der Hersteller zu tun hat. IBM und Microsoft investieren demnach massiv in ihre Cognitive- beziehungsweise KI-Strategie. Beide haben einen starken Mittelstands- und Großkundenvertrieb und ein großes Partnernetzwerk. Google indes verdanke seine Position dem Image als gewaltige daten- und Analytics-Maschine, die den Markt durch viele Innovationen treibe – etwa Tensorflow, viele ML-APIs und auch eigene Hardware. Schließlich zähle aber auch HP Enterprise mit „Haven on Demand“ zu den relevanten ML-Playern und werde von 14 Prozent der Befragten genutzt.

Deep Learning ist schwieriger

Bereits in den 40er Jahren des vergangenen Jahrhunderts wurden die ersten neuronalen Lernregeln beschrieben. Die wissenschaftlichen Erkenntnisse wuchsen rasch, die Anzahl der Algorithmen ebenfalls – doch es fehlte an der notwendigen Rechenleistung, um „Rückgekoppelte Neuronale Netzwerke“ in der Fläche zu nutzen. Heute sind diese unter dem Begriff Deep Learning in aller Munde, sie könnten Bereiche wie Handschriftenerkennung, Spracherkennung, maschinelles Übersetzen oder auch automatische Bildbeschreibungen revolutionieren.

Hintergrund ist, dass eine Präzision erreicht werden kann, die menschliche Fähigkeiten im jeweiligen Zusammenhang weit übertrifft. Dabei spannen neuronale Netze Ebenen von unterschiedlicher Komplexität auf. Je mehr Daten so einem neuronalen Netz zum Trainieren zur Verfügung stehen, desto besser werden die Ergebnisse beziehungsweise die trainierte Künstliche Intelligenz. So lernt ein System beispielsweise, wie anhand einer Computer-Tomografie Krebsgeschwüre diagnostiziert werden können, die das menschliche Auge nicht so einfach sieht.

Grafikprozessoren bieten die nötige Performance

Im Bereich des Deep Learning haben sich hardwareseitig Grafikprozessoren (GPUs) wegen ihre hohen Performance als besonders geeignet erwiesen. Förderlich waren außerdem die schier unbegrenzte Rechenpower, die sich aus den Public-Cloud-Ressourcen ergibt, sowie die Verfügbarkeit großer Mengen von Daten aus den verschiedensten Anwendungsgebieten. Unternehmen nutzen bereits Deep-learning-Algorithmen, im bestimmte Merkmal in Bildern aufzuspüren, Videoanalysen vorzunehmen, Umweltparameter beim autonomen Fahren zu verarbeiten oder automatische Sprachverarbeitung voranzutreiben.

In der Crisp-Umfrage geben 48 Prozent der Teilnehmer an, von Deep Learning zumindest gehört oder gelesen zu haben. Weitere 21 Prozent sind bereits in einer konkreten Evaluationsphase. Sie haben Erkenntnisse gesammelt und arbeiten nun an konkreten Prototypen, um ihr gewünschtes Einsatzszenario zu validieren. Weitere fünf Prozent sind sogar noch einen Schritt weiter und haben bereits Deep Learning im Einsatz. Vor allem Startups und Konzerne – auch hier wieder vor allem aus dem Automotive-Sektor – haben hier die Nase vorn.

Unter den Frameworks und Bibliotheken, die für das Implementieren von Deep-Learning-Algorithmen eine Rolle spielen, spielen unter anderem Microsofts „Computational Network Toolkit“ (CNTK) sowie jede Menge Public-Cloud- und Open-Source-Lösungen eine Rolle (eine Übersicht gibt es hier

Machine Learning macht Analysen besser

Zuerst analysierten lernende Maschinen das Nutzerverhalten in Suchmaschinen, um passende Werbung anzuzeigen. Heute optimieren sie Verkehrsflüsse, die Stahlherstellung und planen die Flugzeugwartung. Experten von Allianz, Trip Advisor, GfK und Boeing erklären, wie ihnen Machine Learning hilft.,3217540

Bei der Münchener Allianz Versicherung ist Andreas Braun, Head of Global Data and Analytics, zufrieden mit den Ergebnissen seiner Experimente mit den neuen Analytics-Ansätzen aus der künstlichen Intelligenz. „Wir haben bei uns ein Ökosystem aus verschiedenen Bestandteilen im Einsatz. Big-Data-Technologien und Machine Learning bieten uns bessere Möglichkeiten, mit unseren Daten umzugehen, und liefern konsistent gute Ergebnisse“, sagte er auf der Konferenz der Yandex Data Factory zum Thema „Machine Learning and Big Data“ in Berlin. Zum Beispiel im Gebäude-Management: Zusammen mit Studenten der TU München hat die Versicherung eine App entwickelt, die eine Vielzahl von Gegenständen über Sensoren vernetzt.

„Das System kalibriert sich selbst, lernt normales Verhalten im Haus, und kann so einen Einbruch von anderen ungewöhnlichen, aber unkritischen Vorfällen unterscheiden.“ Außerdem wollen die Experten die Bilderkennung weiter verbessern. Eingereichte Fotos sollen bei Versicherungsschäden automatisch durch Maschinen beurteilt werden.

Die Experten, die der russische Suchmaschinen-Anbieter Yandex nach Berlin eingeladen hatte, tauschten sich unter dem Motto „Business Challenges“ auch über die Schwierigkeiten und Risiken rund um Machine Learning aus. Jeff Palmucci, Director of Machine Intelligence beim Reiseportal Trip Advisor, schilderte, wie sein Unternehmen maschinelles Lernen in die Geschäftsprozesse implementiert. So hilft die Technik, Restaurants und Hotels automatisiert mit passenden Tags wie „romantisch“ oder „charmant“ zu versehen, damit Suchende schnell das richtige Angebot finden. Auch um Betrug etwa bei den Bewertungen rasch zu erkennen, setzt das Portal Machine Learning ein.

Menschliches Verhalten vorhersagen

Machine Learning stellt Unternehmen vor vielfältige Herausforderungen. Nicht alle Branchen eignen sich gleich gut, erklärte Jane Zavalishina, CEO der Yandex Data Factory: „Es geht vor allem darum, menschliches Verhalten vorherzusagen.“ Bei Ergebnissen, die auf Machine Learning basieren, könne man aber durch die hohe Komplexität und die großen Datenmengen nie genau nachvollziehen, wie sie zustande gekommen sind. In der Praxis müsse man mit den Empfehlungen experimentieren, um herauszufinden, ob sie der bisherigen Vorgehensweise überlegen sind. Das gehe aus ethischen und praktischen Gründen allerdings nicht immer.

Jane Zavalishina CEO, Yandex Data Factory „Viele Unternehmen befinden sich aber noch an dem Punkt, an dem sie versuchen, Big Data Analytics überhaupt zu verstehen.“
Jane Zavalishina CEO, Yandex Data Factory „Viele Unternehmen befinden sich aber noch an dem Punkt, an dem sie versuchen, Big Data Analytics überhaupt zu verstehen.“
Foto: Yandex

In Echtzeit Web-Inhalte zu personalisieren oder Vorhersagen zu treffen, ist für die russische Suchmaschine Yandex nichts Neues. Das Wissen des Konzerns, das aus der Suchtechnik und dem kontextuellen Einspielen passender Werbung entstanden ist, und die dafür entwickelten Algorithmen stellt sie seit 2014 auch extern zur Verfügung. Zunächst probierte das Tochterunternehmen Yandex Data Factory, das Firmensitze in Moskau und Amsterdam unterhält, die Techniken maschinellen Lernens in der Wissenschaft aus – zum Beispiel, um Big-Data-Probleme des europäischen Kernforschungszentrums CERN zu lösen.

Inzwischen besprechen die Datenexperten mit Firmen, die viele Kunden und große Datenmengen haben, wie sich deren Services, Prozesse und Produkte ver­bessern lassen. „Die Anwendungsmöglichkeiten für maschinelles Lernen in Unternehmen sind fast unbegrenzt“, sagte Zavalishina. „Viele Unternehmen befin­den sich aber noch an dem Punkt, an dem sie versuchen, Big Data Analytics überhaupt zu verstehen.“

Eine der ersten Firmen, die Wissen und Technologie von Yandex nutzte, war die russische Straßenverwaltungsbehörde Rosavtodor, die Vorhersagen zur Verkehrsdichte und zu Unfällen benötigte. Im Stahlwerk Magnitogorsk Iron and Steel Works optimieren heute Algorithmen die Stahlproduktion. Zu wenige Zusätze ergeben eine schlechte Qualität, zu viele treiben die Kosten in die Höhe. Bisher nutzten die Stahlkocher für ihre Mischungsvorhersagen komplizierte Modelle. Yandex Data Factory verwendete zur Optimierung historische Daten aus den zurückliegenden zehn Jahren. Vergleichsweise einfach scheint es dagegen, mit Machine Learning Websites zu optimieren und Online-Werbung auszusenden.

Business ist datengetrieben

„Wir sind ein komplett datengetriebenes Business“, sagt Norbert Wirth, Global Head of Data and Science beim Marktforschungsinstitut GfK, „Machine-Learning-Algorithmen sind für uns ein Werkzeug im Kanon mit anderen, das aber für die Vorhersage und für Klassifizierungsprobleme zunehmend wichtiger wird.“ GfK nutzt es derzeit vor allem für die Analyse von Social-Media-Daten und um Marktanteile und Marktperformance vorherzusagen.

„Wir setzen es ein, wenn nicht die Frage nach dem Warum entscheidend ist, sondern die Qualität der Vorhersage“, so Wirth. Sind Aussagen über eine Marke tendenziell eher positiv oder negativ? Und um welche Themen geht es? Bei kleineren Datenbeständen könne man das noch selbst herausfinden, wird es jedoch umfangreicher, seien die Algorithmen „extrem spannend – und sie werden immer leistungsfähiger“. Das sei kein Hype, sagt der Marktforscher, „Machine Learning wird an Bedeutung zunehmen. Mit wachsender Computerpower kann man damit jetzt wirklich arbeiten.“ Die eine Sache sei ein toller Algorithmus, die andere, ob man die dafür nötigen Maschinen auch am Start habe.

In Zukunft werden Analysten laut Wirth zusätzliche Daten verwenden, um Algorithmen zu trainieren und die Modelle leistungsfähiger zu machen. „Es geht in die Richtung, im Analyseprozess mit mehreren Datenquellen zu arbeiten. Natürlich mit solchen, die auch legal genutzt werden dürfen.“ Data Privacy sei ein sehr wichtiges Thema rund um Machine Learning – aber auch die Stabilität und die Qualität der Daten.

Der Flugzeughersteller Boeing nutzt Machine Learning, um seine Services und die interne Produktion zu verbessern, berichtete Sergey Kravchenko, President Russia and CIS von Boeing. Das Flugzeug 787 verfüge über mehr als zehntausend mit dem Internet verbundene Sensoren, die den Mechanikern am Boden schon während des Fluges melden, wenn zum Beispiel eine Lampe oder eine Pumpe ausgetauscht werden muss. So können Fluggesellschaften ihre Wartungskosten reduzieren und im Betrieb effizienter arbeiten.

Boeing arbeitet mit Big Data und Machine Learning, um den Fluggesellschaften mit den während eines Flugs gesammelten Daten zu helfen, Treibstoffkosten zu senken und die Piloten bei schlechtem Wetter zu unterstützen. Nun werden die Daten auch in der Produktion verwendet, um etwa für bestimmte Prozesse die besten Ingenieure zu finden. Daten der Personalabteilung würden genutzt, um zu verstehen, wie die Lebensdauer und die Qualität der Flugzeuge mit dem Training und der Mischung der Menschen im Produktionsteam korrelieren. Gibt es bei Prozessen, die aufwendige Nacharbeiten erfordern, Zusammenhänge mit den bereitgestellten Werkzeugen oder mit dem Team? Kravchenko will mit Big-Data-Analysen den gesamten Zyklus von Design, Produktion und Wartung verbessern.

Ein neues Big-Data-Projekt ist die Flight Training Academy, die 2016 eröffnet werden soll. Hier werden Daten der drei Flugsimulatoren gesammelt und ausgewertet, um die Gestaltung des Cockpits und das Design der Flugzeug­software zu verbessern. Kravchenko will seinen russischen Kunden auch anbieten, in Zukunft Daten auszutauschen und sie gemeinsam auszuwerten.

Experten müssen zusammenpassen

Die Fertigungsindustrie stehe bei der Anwendung von Machine Learning – verglichen etwa mit Telcos und dem Handel – noch am Anfang. Sie werde aber schnell von ihnen und auch von Firmen wie Amazon und Google, lernen. Wer Erfolg haben wolle, müsse die besten Flugzeug- und IT-Experten zusammenbringen. Das Problem: „Die kommen von verschiedenen Planeten.“

Die Zusammenarbeit kann dennoch gelingen – wenn sich alle auf eine gemeinsame Terminologie einigen. „Die Datenexperten müssen etwas mehr von Flugzeugen und Airlines verstehen und die Flugzeugspezialisten mehr über Data Analytics lernen. Sie müssen sich die Werkzeuge teilen, sich gegenseitig vertrauen und ein gemeinsames Team aufbauen“, sagt der Flugzeugbauer. Ein weiteres Problem sei die Relevanz der Daten. „Hier muss die Industrie ihre riesigen Datenmengen anschauen und entscheiden, welche Daten wirklich wichtig sind, um bestimmte Probleme zu lösen. Das ist nicht einfach, dafür brauchen wir Zeit, Trial and Error, und wir müssen von anderen Branchen lernen.“ Die richtige Auswahl der Daten und die Interpretation der Ergebnisse seien dabei wichtiger als der Algorithmus selbst.

Google built its own computer chip specifically for running deep neural networks, called the Tensor Processing Unit, or TPU

Machine Learning and Artificial Intelligence: Soon We Won’t Program Computers. We’ll Train Them Like Dogs


BEFORE THE INVENTION of the computer, most experimental psychologists thought the brain was an unknowable black box. You could analyze a subject’s behavior—ring bell, dog salivates—but thoughts, memories, emotions? That stuff was obscure and inscrutable, beyond the reach of science. So these behaviorists, as they called themselves, confined their work to the study of stimulus and response, feedback and reinforcement, bells and saliva. They gave up trying to understand the inner workings of the mind. They ruled their field for four decades.

Then, in the mid-1950s, a group of rebellious psychologists, linguists, information theorists, and early artificial-intelligence researchers came up with a different conception of the mind. People, they argued, were not just collections of conditioned responses. They absorbed information, processed it, and then acted upon it. They had systems for writing, storing, and recalling memories. They operated via a logical, formal syntax. The brain wasn’t a black box at all. It was more like a computer.

The so-called cognitive revolution started small, but as computers became standard equipment in psychology labs across the country, it gained broader acceptance. By the late 1970s, cognitive psychology had overthrown behaviorism, and with the new regime came a whole new language for talking about mental life. Psychologists began describing thoughts as programs, ordinary people talked about storing facts away in their memory banks, and business gurus fretted about the limits of mental bandwidth and processing power in the modern workplace.

This story has repeated itself again and again. As the digital revolution wormed its way into every part of our lives, it also seeped into our language and our deep, basic theories about how things work. Technology always does this. During the Enlightenment, Newton and Descartes inspired people to think of the universe as an elaborate clock. In the industrial age, it was a machine with pistons. (Freud’s idea of psychodynamics borrowed from the thermodynamics of steam engines.) Now it’s a computer. Which is, when you think about it, a fundamentally empowering idea. Because if the world is a computer, then the world can be coded.

Code is logical. Code is hackable. Code is destiny. These are the central tenets (and self-fulfilling prophecies) of life in the digital age. As software has eaten the world, to paraphrase venture capitalist Marc Andreessen, we have surrounded ourselves with machines that convert our actions, thoughts, and emotions into data—raw material for armies of code-wielding engineers to manipulate. We have come to see life itself as something ruled by a series of instructions that can be discovered, exploited, optimized, maybe even rewritten. Companies use code to understand our most intimate ties; Facebook’s Mark Zuckerberg has gone so far as to suggest there might be a “fundamental mathematical law underlying human relationships that governs the balance of who and what we all care about.” In 2013, Craig Venter announced that, a decade after the decoding of the human genome, he had begun to write code that would allow him to create synthetic organisms. “It is becoming clear,” he said, “that all living cells that we know of on this planet are DNA-software-driven biological machines.” Even self-help literature insists that you can hack your own source code, reprogramming your love life, your sleep routine, and your spending habits.

In this world, the ability to write code has become not just a desirable skill but a language that grants insider status to those who speak it. They have access to what in a more mechanical age would have been called the levers of power. “If you control the code, you control the world,” wrote futurist Marc Goodman. (In Bloomberg Businessweek, Paul Ford was slightly more circumspect: “If coders don’t run the world, they run the things that run the world.” Tomato, tomahto.)

But whether you like this state of affairs or hate it—whether you’re a member of the coding elite or someone who barely feels competent to futz with the settings on your phone—don’t get used to it. Our machines are starting to speak a different language now, one that even the best coders can’t fully understand.

Over the past several years, the biggest tech companies in Silicon Valley have aggressively pursued an approach to computing called machine learning. In traditional programming, an engineer writes explicit, step-by-step instructions for the computer to follow. With machine learning, programmers don’t encode computers with instructions. They train them. If you want to teach a neural network to recognize a cat, for instance, you don’t tell it to look for whiskers, ears, fur, and eyes. You simply show it thousands and thousands of photos of cats, and eventually it works things out. If it keeps misclassifying foxes as cats, you don’t rewrite the code. You just keep coaching it.

This approach is not new—it’s been around for decades—but it has recently become immensely more powerful, thanks in part to the rise of deep neural networks, massively distributed computational systems that mimic the multilayered connections of neurons in the brain. And already, whether you realize it or not, machine learning powers large swaths of our online activity. Facebook uses it to determine which stories show up in your News Feed, and Google Photos uses it to identify faces. Machine learning runs Microsoft’s Skype Translator, which converts speech to different languages in real time. Self-driving cars use machine learning to avoid accidents. Even Google’s search engine—for so many years a towering edifice of human-written rules—has begun to rely on these deep neural networks. In February the company replaced its longtime head of search with machine-learning expert John Giannandrea, and it has initiated a major program to retrain its engineers in these new techniques. “By building learning systems,” Giannandrea told reporters this fall, “we don’t have to write these rules anymore.”

But here’s the thing: With machine learning, the engineer never knows precisely how the computer accomplishes its tasks. The neural network’s operations are largely opaque and inscrutable. It is, in other words, a black box. And as these black boxes assume responsibility for more and more of our daily digital tasks, they are not only going to change our relationship to technology—they are going to change how we think about ourselves, our world, and our place within it.

If in the old view programmers were like gods, authoring the laws that govern computer systems, now they’re like parents or dog trainers. And as any parent or dog owner can tell you, that is a much more mysterious relationship to find yourself in.

ANDY RUBIN IS an inveterate tinkerer and coder. The cocreator of the Android operating system, Rubin is notorious in Silicon Valley for filling his workplaces and home with robots. He programs them himself. “I got into computer science when I was very young, and I loved it because I could disappear in the world of the computer. It was a clean slate, a blank canvas, and I could create something from scratch,” he says. “It gave me full control of a world that I played in for many, many years.”

Now, he says, that world is coming to an end. Rubin is excited about the rise of machine learning—his new company, Playground Global, invests in machine-learning startups and is positioning itself to lead the spread of intelligent devices—but it saddens him a little too. Because machine learning changes what it means to be an engineer.

Soon We Won’t Program Computers. We’ll Train Them Like Dogs

The brightest minds in AI research – Machine Learning

In AI research,  brightest minds aren’t driven by the next product cycle or profit margin – They want to make AI better, and making AI better doesn’t happen when you keep your latest findings to yourself.

Inside OpenAI, Elon Musk’s Wild Plan to Set Artificial Intelligence Free


THE FRIDAY AFTERNOON news dump, a grand tradition observed by politicians and capitalists alike, is usually supposed to hide bad news. So it was a little weird that Elon Musk, founder of electric car maker Tesla, and Sam Altman, president of famed tech incubator Y Combinator, unveiled their new artificial intelligence company at the tail end of a weeklong AI conference in Montreal this past December.

But there was a reason they revealed OpenAI at that late hour. It wasn’t that no one was looking. It was that everyone was looking. When some of Silicon Valley’s most powerful companies caught wind of the project, they began offering tremendous amounts of money to OpenAI’s freshly assembled cadre of artificial intelligence researchers, intent on keeping these big thinkers for themselves. The last-minute offers—some made at the conference itself—were large enough to force Musk and Altman to delay the announcement of the new startup. “The amount of money was borderline crazy,” says Wojciech Zaremba, a researcher who was joining OpenAI after internships at both Google and Facebook and was among those who received big offers at the eleventh hour.

How many dollars is “borderline crazy”? Two years ago, as the market for the latest machine learning technology really started to heat up, Microsoft Research vice president Peter Lee said that the cost of a top AI researcher had eclipsed the cost of a top quarterback prospect in the National Football League—and he meant under regular circumstances, not when two of the most famous entrepreneurs in Silicon Valley were trying to poach your top talent. Zaremba says that as OpenAI was coming together, he was offered two or three times his market value.

OpenAI didn’t match those offers. But it offered something else: the chance to explore research aimed solely at the future instead of products and quarterly earnings, and to eventually share most—if not all—of this research with anyone who wants it. That’s right: Musk, Altman, and company aim to give away what may become the 21st century’s most transformative technology—and give it away for free.

Zaremba says those borderline crazy offers actually turned him off—despite his enormous respect for companies like Google and Facebook. He felt like the money was at least as much of an effort to prevent the creation of OpenAI as a play to win his services, and it pushed him even further towards the startup’s magnanimous mission. “I realized,” Zaremba says, “that OpenAI was the best place to be.”

That’s the irony at the heart of this story: even as the world’s biggest tech companies try to hold onto their researchers with the same fierceness that NFL teams try to hold onto their star quarterbacks, the researchers themselves just want to share. In the rarefied world of AI research, the brightest minds aren’t driven by—or at least not only by—the next product cycle or profit margin. They want to make AI better, and making AI better doesn’t happen when you keep your latest findings to yourself.

OpenAI is a billion-dollar effort to push AI as far as it will go.
This morning, OpenAI will release its first batch of AI software, a toolkit for building artificially intelligent systems by way of a technology called “reinforcement learning”—one of the key technologies that, among other things, drove the creation of AlphaGo, the Google AI that shocked the world by mastering the ancient game of Go. With this toolkit, you can build systems that simulate a new breed of robot, play Atari games, and, yes, master the game of Go.

But game-playing is just the beginning. OpenAI is a billion-dollar effort to push AI as far as it will go. In both how the company came together and what it plans to do, you can see the next great wave of innovation forming. We’re a long way from knowing whether OpenAI itself becomes the main agent for that change. But the forces that drove the creation of this rather unusual startup show that the new breed of AI will not only remake technology, but remake the way we build technology.

AI Everywhere
Silicon Valley is not exactly averse to hyperbole. It’s always wise to meet bold-sounding claims with skepticism. But in the field of AI, the change is real. Inside places like Google and Facebook, a technology called deep learning is already helping Internet services identify faces in photos, recognize commands spoken into smartphones, and respond to Internet search queries. And this same technology can drive so many other tasks of the future. It can help machines understand natural language—the natural way that we humans talk and write. It can create a new breed of robot, giving automatons the power to not only perform tasks but learn them on the fly. And some believe it can eventually give machines something close to common sense—the ability to truly think like a human.

But along with such promise comes deep anxiety. Musk and Altman worry that if people can build AI that can do great things, then they can build AI that can do awful things, too. They’re not alone in their fear of robot overlords, but perhaps counterintuitively, Musk and Altman also think that the best way to battle malicious AI is not to restrict access to artificial intelligence but expand it. That’s part of what has attracted a team of young, hyper-intelligent idealists to their new project.

OpenAI began one evening last summer in a private room at Silicon Valley’s Rosewood Hotel—an upscale, urban, ranch-style hotel that sits, literally, at the center of the venture capital world along Sand Hill Road in Menlo Park, California. Elon Musk was having dinner with Ilya Sutskever, who was then working on the Google Brain, the company’s sweeping effort to build deep neural networks—artificially intelligent systems that can learn to perform tasks by analyzing massive amounts of digital data, including everything from recognizing photos to writing email messages to, well, carrying on a conversation. Sutskever was one of the top thinkers on the project. But even bigger ideas were in play.

Sam Altman, whose Y Combinator helped bootstrap companies like Airbnb, Dropbox, and Coinbase, had brokered the meeting, bringing together several AI researchers and a young but experienced company builder named Greg Brockman, previously the chief technology officer at high-profile Silicon Valley digital payments startup called Stripe, another Y Combinator company. It was an eclectic group. But they all shared a goal: to create a new kind of AI lab, one that would operate outside the control not only of Google, but of anyone else. “The best thing that I could imagine doing,” Brockman says, “was moving humanity closer to building real AI in a safe way.”

Musk is one of the loudest voices warning that we humans could one day lose control of systems powerful enough to learn on their own.
Musk was there because he’s an old friend of Altman’s—and because AI is crucial to the future of his various businesses and, well, the future as a whole. Tesla needs AI for its inevitable self-driving cars. SpaceX, Musk’s other company, will need it to put people in space and keep them alive once they’re there. But Musk is also one of the loudest voices warning that we humans could one day lose control of systems powerful enough to learn on their own.

The trouble was: so many of the people most qualified to solve all those problems were already working for Google (and Facebook and Microsoft and Baidu and Twitter). And no one at the dinner was quite sure that these thinkers could be lured to a new startup, even if Musk and Altman were behind it. But one key player was at least open to the idea of jumping ship. “I felt there were risks involved,” Sutskever says. “But I also felt it would be a very interesting thing to try.”

Breaking the Cycle
Emboldened by the conversation with Musk, Altman, and others at the Rosewood, Brockman soon resolved to build the lab they all envisioned. Taking on the project full-time, he approached Yoshua Bengio, a computer scientist at the University of Montreal and one of founding fathers of the deep learning movement. The field’s other two pioneers—Geoff Hinton and Yann LeCun—are now at Google and Facebook, respectively, but Bengio is committed to life in the world of academia, largely outside the aims of industry. He drew up a list of the best researchers in the field, and over the next several weeks, Brockman reached out to as many on the list as he could, along with several others.

Many of these researchers liked the idea, but they were also wary of making the leap. In an effort to break the cycle, Brockman picked the ten researchers he wanted the most and invited them to spend a Saturday getting wined, dined, and cajoled at a winery in Napa Valley. For Brockman, even the drive into Napa served as a catalyst for the project. “An underrated way to bring people together are these times where there is no way to speed up getting to where you’re going,” he says. “You have to get there, and you have to talk.” And once they reached the wine country, that vibe remained. “It was one of those days where you could tell the chemistry was there,” Brockman says. Or as Sutskever puts it: “the wine was secondary to the talk.”

By the end of the day, Brockman asked all ten researchers to join the lab, and he gave them three weeks to think about it. By the deadline, nine of them were in. And they stayed in, despite those big offers from the giants of Silicon Valley. “They did make it very compelling for me to stay, so it wasn’t an easy decision,” Sutskever says of Google, his former employer. “But in the end, I decided to go with OpenAI, partly of because of the very strong group of people and, to a very large extent, because of its mission.”

The deep learning movement began with academics. It’s only recently that companies like Google and Facebook and Microsoft have pushed into the field, as advances in raw computing power have made deep neural networks a reality, not just a theoretical possibility. People like Hinton and LeCun left academia for Google and Facebook because of the enormous resources inside these companies. But they remain intent on collaborating with other thinkers. Indeed, as LeCun explains, deep learning research requires this free flow of ideas. “When you do research in secret,” he says, “you fall behind.”

As a result, big companies now share a lot of their AI research. That’s a real change, especially for Google, which has long kept the tech at the heart of its online empire secret. Recently, Google open sourced the software engine that drives its neural networks. But it still retains the inside track in the race to the future. Brockman, Altman, and Musk aim to push the notion of openness further still, saying they don’t want one or two large corporations controlling the future of artificial intelligence.

The Limits of Openness
All of which sounds great. But for all of OpenAI’s idealism, the researchers may find themselves facing some of the same compromises they had to make at their old jobs. Openness has its limits. And the long-term vision for AI isn’t the only interest in play. OpenAI is not a charity. Musk’s companies that could benefit greatly the startup’s work, and so could many of the companies backed by Altman’s Y Combinator. “There are certainly some competing objectives,” LeCun says. “It’s a non-profit, but then there is a very close link with Y Combinator. And people are paid as if they are working in the industry.”

According to Brockman, the lab doesn’t pay the same astronomical salaries that AI researchers are now getting at places like Google and Facebook. But he says the lab does want to “pay them well,” and it’s offering to compensate researchers with stock options, first in Y Combinator and perhaps later in SpaceX (which, unlike Tesla, is still a private company).

Brockman insists that OpenAI won’t give special treatment to its sister companies.
Nonetheless, Brockman insists that OpenAI won’t give special treatment to its sister companies. OpenAI is a research outfit, he says, not a consulting firm. But when pressed, he acknowledges that OpenAI’s idealistic vision has its limits. The company may not open source everything it produces, though it will aim to share most of its research eventually, either through research papers or Internet services. “Doing all your research in the open is not necessarily the best way to go. You want to nurture an idea, see where it goes, and then publish it,” Brockman says. “We will produce lot of open source code. But we will also have a lot of stuff that we are not quite ready to release.”

Both Sutskever and Brockman also add that OpenAI could go so far as to patent some of its work. “We won’t patent anything in the near term,” Brockman says. “But we’re open to changing tactics in the long term, if we find it’s the best thing for the world.” For instance, he says, OpenAI could engage in pre-emptive patenting, a tactic that seeks to prevent others from securing patents.

But to some, patents suggest a profit motive—or at least a weaker commitment to open source than OpenAI’s founders have espoused. “That’s what the patent system is about,” says Oren Etzioni, head of the Allen Institute for Artificial Intelligence. “This makes me wonder where they’re really going.”

The Super-Intelligence Problem
When Musk and Altman unveiled OpenAI, they also painted the project as a way to neutralize the threat of a malicious artificial super-intelligence. Of course, that super-intelligence could arise out of the tech OpenAI creates, but they insist that any threat would be mitigated because the technology would be usable by everyone. “We think its far more likely that many, many AIs will work to stop the occasional bad actors,” Altman says.

But not everyone in the field buys this. Nick Bostrom, the Oxford philosopher who, like Musk, has warned against the dangers of AI, points out that if you share research without restriction, bad actors could grab it before anyone has ensured that it’s safe. “If you have a button that could do bad things to the world,” Bostrom says, “you don’t want to give it to everyone.” If, on the other hand, OpenAI decides to hold back research to keep it from the bad guys, Bostrom wonders how it’s different from a Google or a Facebook.

If you share research without restriction, bad actors could grab it before anyone has ensured that it’s safe.
He does say that the not-for-profit status of OpenAI could change things—though not necessarily. The real power of the project, he says, is that it can indeed provide a check for the likes of Google and Facebook. “It can reduce the probability that super-intelligence would be monopolized,” he says. “It can remove one possible reason why some entity or group would have radically better AI than everyone else.”

But as the philosopher explains in a new paper, the primary effect of an outfit like OpenAI—an outfit intent on freely sharing its work—is that it accelerates the progress of artificial intelligence, at least in the short term. And it may speed progress in the long term as well, provided that it, for altruistic reasons, “opts for a higher level of openness than would be commercially optimal.”

“It might still be plausible that a philanthropically motivated R&D funder would speed progress more by pursuing open science,” he says.

Like Xerox PARC
In early January, Brockman’s nine AI researchers met up at his apartment in San Francisco’s Mission District. The project was so new that they didn’t even have white boards. (Can you imagine?) They bought a few that day and got down to work.

Brockman says OpenAI will begin by exploring reinforcement learning, a way for machines to learn tasks by repeating them over and over again and tracking which methods produce the best results. But the other primary goal is what’s called “unsupervised learning”—creating machines that can truly learn on their own, without a human hand to guide them. Today, deep learning is driven by carefully labeled data. If you want to teach a neural network to recognize cat photos, you must feed it a certain number of examples—and these examples must be labeled as cat photos. The learning is supervised by human labelers. But like many others researchers, OpenAI aims to create neural nets that can learn without carefully labeled data.

“If you have really good unsupervised learning, machines would be able to learn from all this knowledge on the Internet—just like humans learn by looking around—or reading books,” Brockman says.

He envisions OpenAI as the modern incarnation of Xerox PARC, the tech research lab that thrived in the 1970s. Just as PARC’s largely open and unfettered research gave rise to everything from the graphical user interface to the laser printer to object-oriented programing, Brockman and crew seek to delve even deeper into what we once considered science fiction. PARC was owned by, yes, Xerox, but it fed so many other companies, most notably Apple, because people like Steve Jobs were privy to its research. At OpenAI, Brockman wants to make everyone privy to its research.

This month, hoping to push this dynamic as far as it will go, Brockman and company snagged several other notable researchers, including Ian Goodfellow, another former senior researcher on the Google Brain team. “The thing that was really special about PARC is that they got a bunch of smart people together and let them go where they want,” Brockman says. “You want a shared vision, without central control.”

Giving up control is the essence of the open source ideal. If enough people apply themselves to a collective goal, the end result will trounce anything you concoct in secret. But if AI becomes as powerful as promised, the equation changes. We’ll have to ensure that new AIs adhere to the same egalitarian ideals that led to their creation in the first place. Musk, Altman, and Brockman are placing their faith in the wisdom of the crowd. But if they’re right, one day that crowd won’t be entirely human.