Archiv der Kategorie: Artificial Intelligence

TV May Actually Die Soon

FANG (Facebook, Amazon, Netflix, Google/YouTube) is about to take a huge bite out of traditional network TV (ABC, NBC, CBS and Fox), and the media business will never be the same.

To understand the profound implications of the recently announced NFL on Amazon Prime or YouTube TV, it may help to understand the economic engine that drives traditional commercial television.

The goal of the commercial TV business is to package a specific, targeted audience and sell it to the highest bidder. The more precise the targeting, the higher the fee; the bigger the targeted audience, the bigger the fee.

TV is data-poor

Because the broadcast television industry is data poor (it only offers metrics about itself), this model has never been a complete solution for brand or lifestyle advertisers. In practice, an advertiser needs to translate ratings and demographic information from Nielsen into knowledge and insights it can link to its key performance indicators (KPIs). Because content is distributed across so many non-TV platforms, this process gets more difficult every day. How effective was your broadcast TV buy? Was there an increase in sales that could be attributed to it? Could we have spent this portion of our advertising budget differently?

FANG is data-rich

There are four data sets that help define each of us: attention, consumption, passion and intention. While traditional broadcast TV tries to measure or attribute some of these to TV viewership, FANG has actionable data that drives KPIs.

Facebook knows what you are paying attention to. You post and share the things you care about, and your Facebook profile makes your attention actionable.

Amazon knows what you consume and what you’re thinking about consuming. If you’ve bought it or are planning to buy it, Amazon knows it and can act on that data.

Netflix knows your passions. You demonstrate how you can be reached on an emotional level every time you watch a video. Netflix knows more about the kind of entertainment that ignites your passions than you do. It continually acts on that data.

Google/YouTube knows your intentions. You never intend to go to Google and stay there; you search for what you intend to do. Your Google profile indicates, with a very high degree of accuracy, what you are likely to do in the near-term future. This is some of the clearest, most actionable data in the world.

We’ll still have four major networks, just not the familiar four

People often reminisce about the „good ol‘ days“ when there were four major networks: ABC, NBC, CBS and Fox. We are transitioning to a world where there will still be four networks, just not the four networks you’re used to. FANG is delivering actionable data to advertisers in ways that traditional broadcasters simply can’t.

The power of Amazon Prime to a fast-moving consumer goods company may be less significant than the power of Amazon Prime to a consumer electronics manufacturer, but Amazon is becoming a complete solution for all types of b-to-c — and many types of b-to-b — advertisers. Its size, scale and efficacy are truly stunning.

If YouTube TV and other over-the-top skinny bundles start to get traction, we are going to see a dramatic shift toward the data-rich, brand-safe, internet giants. (Yes, Facebook and Google will deal with their current content adjacency and brand safety problems, and you will forget they had them.) FANG will not be alone. Apple is going to get into this game, and there are international powerhouses like Alibaba and QQ that are already well on their way.

What does this really mean?

For today: Advertisers are spending, traditional networks are making money and all of this sounds like stuff you’ve heard before. But we’re only talking about timing. Traditional (linear) TV audiences are declining at a significant rate, and they are practically aged out of key demographics. Cable customers are also declining. So, the question is when this shift will make a difference, not if.

For consumers: More choice, more fun. Consumers don’t care about content transport mechanisms or broadcast business models, they just want their content.

For advertisers: Brands have never wanted to buy CPMs (cost per thousand impressions) or GRPs (gross rating points); they want to sell stuff. The data-rich FANG and other tech giants are offering data that can be turned directly into sales.

For networks: It’s just a matter of time before media without actionable data will be impossible to monetize. Can traditional TV catch up? Adapt or die!

http://adage.com/article/digitalnext/tv-die-stay-tuned/308618

Advertisements

Machine Learning – Basics – Einsatzgebiete – Technik

Machine Learning, Deep Learning, Cognitive Computing – Technologien der Künstlichen Intelligenz verbreiten sich rasant. Hintergrund ist, dass heute die Rechen- und Speicherkapazitäten zur Verfügung stehen, die KI-Szenarien möglich machen. Ein Überblick.
 
  • Machine Learning hilft, Muster in großen Datenbeständen zu erkennen und daraus Erkenntnisse zu gewinnen
  • Die Einsatzszenarien reichen von der Spamanalyse über Stauprognosen bis hin zur medizinischen Diagnostik
  • Technische Grundlage ist eine Cloud-basierte Digital Infrastructure Platform

http://www.computerwoche.de/a/machine-learning-darum-geht-s,3330413
http://www.computerwoche.de/a/machine-learning-das-haben-deutsche-unternehmen-vor,3330418
http://www.computerwoche.de/a/machine-learning-die-technik,3330420

Künstliche Intelligenz und Machine Learning (ML) sind keine neuen Technologien, doch im praktischen Einsatz spielen sie erst jetzt eine wichtige Rolle. Woran liegt das? Wichtigste Voraussetzung für lernende Systeme und entsprechende Algorithmen sind ausreichende Rechenkapazitäten und der Zugriff auf riesige Datenmengen – egal ob es sich um Kunden-, Log- oder Sensordaten handelt. Sie sind für das Training der Algorithmen und die Modellbildung unverzichtbar – und sie stehen mit Public- und Private-Cloud-Infrastrukturen zur Verfügung.

Bildanalyse und -erkennung ist das wichtigste Machine-Learning-Thema, doch die Spracherkennung und -verarbeitung ist schwer im Kommen.
Bildanalyse und -erkennung ist das wichtigste Machine-Learning-Thema, doch die Spracherkennung und -verarbeitung ist schwer im Kommen.
Foto: Crisp Research, Kassel

 

Die Analysten von Crisp Research sind im Rahmen einer umfassenden Studie gemeinsam mit The unbelievable Machine Company und Hewlett-Packard Enterprise (HPE) der Frage nachgegangen, welche Rolle Machine Learning heute und in Zukunft im Unternehmenseinsatz spielen wird. Dabei zeigt sich, dass deutsche Unternehmen hier schon recht weit fortgeschritten sind. Bereits ein Fünftel setzt ML-Technologien aktiv ein, 64 Prozent beschäftigen sich intensiv mit dem Thema und vier von fünf Befragten sagen sogar, ML werde irgendwann eine der Kerntechnologien des vollständig digitalisierten Unternehmens sein.

Muster erkennen und Vorhersagen treffen

ML-Algorithmen helfen den Menschen, Muster in vorhandenen Datenbeständen zu erkennen, Vorhersagen zu treffen oder Daten zu klassifizieren. Mit mathematischen Modellen können neue Erkenntnisse auf Grundlage dieser Muster gewonnen werden. Das gilt für viele Lebens- und Geschäftsbereiche. Oftmals profitieren Internet-Nutzer längst davon, ohne über die Technologie im Hintergrund nachzudenken.

Das Spektrum der Anwendungen reicht von Musik- und Filmempfehlungen im privaten Umfeld bis hin zur Verbesserung von Marketing-Kampagnen, Kundenservices oder auch Logistikrouten im geschäftlichen Bereich. Dafür steht ein breites Spektrum an ML-Verfahren zur Verfügung, darunter Lineare Regression, Instanzenbasiertes Lernen, Entscheidungs-Baum-Algorithmen, Bayesche Statistik, Clusteranalyse, Neuronale Netzwerke, Deep Learning und Verfahren zur Dimensionsreduktion.

Die Anwendungsbereiche sind vielfältig und teilweise bekannt. Man denke etwa an Spam-Erkennung, die Personalisierung von Inhalten, das Klassifizieren von Dokumenten, Sentiment-Analysen, Prognosen der Kundenabwanderung, E-Mail-Klassifizierung, Analyse von Upselling-Möglichkeiten, Stauprognosen, Genomanalysen, medizinische Diagnostik, Chatbots und vieles mehr. Für nahezu alle Branchen und Unternehmenstypen ergeben sich also Gelegenheiten.

Moderne IT-Plattformen unterstützen KI

Machine Learning ist laut Crisp Research idealerweise Bestandteil einer modernen, skalierungsfähigen und flexiblen IT-Infrastruktur – einer „Digital Infrastructure Platform“. Diese zeichnet sich durch Elastizität, Automatisierung, eine API-basierte Architektur und Agilität aus. Eine solche Plattform ist in der Regel Cloud-basiert aufgesetzt und dient als Grundlage für die Entwicklung und den Betrieb neuer digitaler Anwendungen und Prozesse. Sie bietet eine offene Architektur, Programmierschnittstellen (APIs), um externe Services zu integrieren, die Unterstützung von DevOps-Konzepten sowie moderne Methoden für kurze Release- und Innovationszyklen.

Die Verarbeitung und Analyse großer Datenmengen ist eine Kernaufgabe einer solchen Digital Infrastructure Platform. Deshalb müssen die IT-Verantwortlichen Sorge tragen, dass ihre IT mit unterschiedlichen Verfahren der Künstlichen Intelligenz umgehen kann. Server-, Storage- und Netzwerk-Infrastrukturen müssen auf neue ML-basierte Workloads ausgelegt sein. Auch das Daten-Management muss vorbereitet sein, damit ML-as-a-Service-Angebote in der Cloud genutzt werden können.

Im Kontext von ML haben sich in den vergangenen Monaten auch alternative Hardwarekomponenten durchgesetzt, etwa GPU-basierte Cluster von Nvidia, Googles Tensor Processing Unit (TPU) oder IBMs TrueNorth-Prozessor. Unternehmen müssen sich entscheiden, ob sie hier selbst investieren oder die Angebote entsprechender Cloud-Provider nutzen wollen.

Einer der großen Anwendungsbereiche für ML ist die Spracherkennung und -verarbeitung. Amazons Alexa zieht gerade in die Haushalte ein, Microsoft, Google, Facebook und IBM haben hier einen Großteil ihrer Forschungs- und Entwicklungsgelder investiert sowie spezialisierte Firmen zugekauft. Es lässt sich absehen, dass natürlichsprachige Kommunikation an der Kundenschnittstelle selbstverständlicher wird. Auch die Bedienung von digitalen Produkten und Enterprise-IT-Lösungen wird via Sprachbefehl möglich sein. Das hat sowohl Auswirkungen auf das Customer-Frontend als auch auf das IT-Backend.

Niedrige Einstiegshürden in Machine Learning

Da die großen Cloud-Anbieter ML-Services und -Produkte in ihr Leistungsportfolio aufgenommen haben, ist es für Anwender relativ einfach, einen Einstieg zu finden. Amazon Machine Learning, Microsoft Azure Machine Learning, IBM Bluemix und Google Machine Learning erlauben einen kostengünstigen Zugang zu entsprechenden Diensten über die Public Cloud. Anwender brauchen also keinen eigenen Supercomputer, kein Team von Statistikexperten und kein dediziertes Infrastruktur-Management mehr. Mit ein paar Kommandos über die APIs der großen Public-Cloud-Provider können sie loslegen.

Anwender brauchen vor allem Hilfe bei der Datenexploration.
Anwender brauchen vor allem Hilfe bei der Datenexploration.
Foto: Crisp Research, Kassel

 

Sie finden dort unterschiedliche Machine-Learning-Verfahren sowie Dienste und Tools wie etwa grafische Programmiermodelle und Storage-Dienste vor. Je mehr sie sich darauf einlassen, desto größer wird allerdings das Risiko eines Vendor-Lock-ins. Deshalb sollten sich Anwender vor dem Start Gedanken über ihre Strategie machen. IT-Dienstleister und Managed-Service-Provider können ebenso ML-Systeme und Infrastrukturen bereitstellen und betreiben, so dass Unabhängigkeit von den Public-Cloud-Providern und ihren SLAs ebenso möglich ist.

Verschiedene Spielarten der KI

Machine Learning, Deep Learning, Cognitive Computing – derzeit kursieren eine Reihe von KI-Begriffen, deren Abgrenzung voneinander nicht ganz einfach ist. Crisp Research wählt dafür die Dimensionen „Clarity of Purpose“ (Orientierung am Einsatzweck) und „Degree of Autonomy“ (Grad der Autonomie). ML-Systeme sind derzeit größtenteils auf Einsatzzwecke hin entwickelt und trainiert. Sie erkennen beispielsweise im Fertigungsprozess fehlerhafte Produkte im Rahmen einer Qualitätskontrolle. Ihre Aufgabe ist klar umrissen, es gibt keine Autonomie.

Deep-Learning-Systeme hingegen sind in der Lage, mittels Neuronaler Netze eigenständig zu lernen. Simulierte Neuronen werden in vielen Schichten übereinander modelliert und angeordnet. Jede Ebene des Netzwerks erfüllt dabei eigenständig bestimmte Aufgaben, etwa das Erkennen von Kanten. Diese Information wird eigenständig an die nächste Ebene weitergegeben und fließt dort in die Verarbeitung ein. Im Zusammenspiel mit großen Mengen an Trainingsdaten lernen solche Netzwerke, bestimmte Aufgaben zu erledigen – etwa das Identifizieren von Krebszellen in medizinischen Bildern.

Deep-Learning-Systeme arbeiten autonomer

Deep-Learning-Systeme arbeiten also deutlich autonomer als ML-Systeme, da die Neuronalen Netzwerke darauf trainiert werden, selbständig zu lernen und Entscheidungen zu treffen, die von außen nicht unbedingt nachvollziehbar sind.

Als dritte Spielart der KI gilt das Cognitive Computing, das insbesondere von IBM mit seiner Watson-Technologie propagiert wird. Solche Systeme zeichnen sich dadurch aus, dass sie in einer Assistenzfunktion oder gar als Ersatz des Menschen Aufgaben übernehmen und Entscheidungen treffen und dabei mit Ambiguität und Unschärfe umgehen können. Als Beispiele können das Schadensfall-Management in einer Versicherung dienen, eine Service-Hotline oder die Diagnostik im Krankenhaus.

Auch wenn hier bereits ein hohes Maß an Autonomie erreicht werden kann, ist der Weg zu echter Künstlicher Intelligenz mit autonomen kognitiven Fähigkeiten noch weit. Die Wissenschaft beschäftigt sich aber intensiv damit und streitet darüber, ob und wann dieses Ziel erreicht werden kann. Derweil sind Unternehmen gut beraten, sich mit den machbaren Use Cases zu beschäftigen, von denen es bereits eine Menge gibt.

Im Zuge des Digitalisierungstrends kommt in vielen Unternehmen Analytics auf die Tagesordnung – und damit auch Machine Learning und Deep Learning. Jetzt geht es darum, den Datenschatz zu heben.
  • Viele Unternehmen haben Data Lakes mit strukturierten und unstrukturierten Daten aufgebaut. Jetzt gilt es, etwas daraus zu machen
  • Einsatzgebiete für Machine Learning sind etwa Prozessverbesserungen sowie eine bessere Kundenansprache und ein möglichst effizienter Support
  • In vielen Branchen ist der Abstand zwischen Vorreitern und Nachzüglern riesig

Die Phantasien und Visionen rund um die digitale Zukunft kennen derzeit keine Grenzen. Vollautomatisierte Produktionsstraßen, autonome Verkehrssysteme, intelligente digitale Assistenten – es vergeht kaum ein Tag, an dem nicht neue Szenarien diskutiert werden. Dadurch fühlen sich viele Firmen unter Druck gesetzt. Sie arbeiten am „digitalen Unternehmen“ und entdecken ihre Daten als Grundlagen für neue Geschäftsmodelle und Services. So gewinnt Analytics an Bedeutung – und mit der Analytics-Strategie kommen KI und Machine Learning (ML) auf die Tagesordnung.

Aus diesen Gründen beschäftigen sich Anwender mit Machine Learning.
Aus diesen Gründen beschäftigen sich Anwender mit Machine Learning.
Foto: Crisp Research

 

IT- und Digitalisierungsentscheider vermuten ein enormes Potenzial hinter dem Thema Machine Learning. Eine Umfrage, die das Analystenhaus Crisp Research unterstützt von The unbelievable Machine Company und Hewlett-Packard Enterprise (HPE) auf den Weg gebracht hat, zeigt, dass nur drei Prozent der knapp 250 Befragten ML für einen Marketing-Hype halten. Ein Drittel bezeichnet ML-Verfahren in begrenzten Einsatzbereichen als sinnvoll, sogar 43 Prozent sind überzeugt davon, dass ML ein wichtiger Aspekt künftiger Big-Data- und Analytics-Strategien wird.

Wie die Initiatoren der Studie feststellen, ist das kein überraschendes Ergebnis. Die meisten Unternehmen haben im großen Stil in Big-Data-Infrastrukturen und eigene Data Lakes investiert, um ihre Unternehmensdaten zusammenzuführen und auswertbar zu machen. ML ermöglicht einen hohen Automationsgrad in der Datenanalyse und hilft somit, den verborgenen Schatz zu heben. Daten gelten als großes Asset, doch den Beweis dafür haben viele Firmen noch nicht gebracht. Technologien und Use Cases rund um Machine Learning versprechen Abhilfe.

Immenses Innovationspotenzial

Immerhin 16 Prozent der befragten sehen ML sogar als neue „Kerntechnologie eines vollständig digitalen Unternehmens“. Das Innovations- und Gestaltungspotenzial scheint also immens, wenngleich viele Probleme rund um Datenqualität, Governance, API-Management, Infrastruktur und vor allem Personal den Trend noch bremsen.

Rund 34 Prozent der Befragten beschäftigen sich mit ML, weil sie ihre internen Prozesse in der Produktion, Logistik oder im Qualitätsmanagement verbessern wollen. Sie erheben beispielsweise Daten im Produktionsablauf, um ihre Fertigung optimieren zu können. Fast ebenso viele wollen Initiativen rund um die Customer Experience vorantreiben – etwa in E-Commerce, Marketing oder im Bereich der Portale und Apps. Sie versprechen sich davon beispielsweise eine personalisierte Kundenansprache, um Produkte oder Dienste zielgerichteter an den Konsumenten bringen zu können. Mit 19 Prozent ist die Gruppe derer, die Wartungs- und Supportleistungen optimieren wollen (Predictive Maintenance), etwas kleiner. Hinzu kommen Betriebe, die sich grundsätzlich mit neuen Technologien beschäftigen (28 Prozent) oder durch Berater und Analysten auf das Thema aufmerksam geworden sind (27 Prozent).

Elementar für selbstfahrende Autos

Das Nutzungsverhalten von ML ist nicht nur zwischen, sondern auch innerhalb der Branchen sehr unterschiedlich ausgeprägt. In der Automobilbranche etwa gibt es große Abstände zwischen den Vorreitern und den Nachzüglern. Für die Entwicklung und Produktion selbstfahrender Autos sind Bild- und Videoanalyse in Echtzeit sowie statistische Verfahren und mathematische Modelle aus Machine Learning und Deep Learning weit verbreitet. Einige Verfahren werden auch dazu verwendet, Fabrikationsfehler in der Fertigung zu erkennen.

Der Anteil der Innovatoren, die ML bereits in weiten Teilen einsetzen, ist in der Automobilbranche mit rund 20 Prozent am größten. Demgegenüber stehen allerdings 60 Prozent, die sich zwar mit ML beschäftigen, aber noch in der Evaluierungs- und Planungsphase stecken. So zeigt sich, dass in der Autobranche einige Leuchttürme das Bild prägen, von einer flächendeckenden Adaption aber nicht die Rede sein kann.

Status der Branchen bei der Einführung von Machine-Learning-Technologien
Status der Branchen bei der Einführung von Machine-Learning-Technologien
Foto: Crisp Research

 

Auch die Maschinen- und Anlagenbauer stecken noch zur Hälfte (53 Prozent) in der Evaluierungs- und Planungsphase. Ein knappe Drittel nutzt ML in ausgewählten Anwendungsbereichen produktiv und 18 Prozent bauen derzeit Prototypen. Weiter sind die Handels- und Konsumgüterfirmen, die zu 44 Prozent dabei sind, ML in ersten Projekten und Prototypen zu erproben. Das überrascht insofern nicht, als diese Firmen in der Regel gute gepflegte Datenbestände haben und viel Erfahrung mit Business Intelligence und Data Warehouses besitzen. Gelingt es ihnen, Preisstrategien, Warenverfügbarkeiten oder Marketing-Kampagnen messbar zu verbessern, wird ML als willkommenes Innovationsinstrument bestehender Big-Data-Strategien gesehen.

Gleiches gilt für die IT-, TK- und Medienbranche: Dort kommen ML-Verfahren etwa zum Ausspielen von Online-Werbung, Berechnen von Kaufwahrscheinlichkeiten (Conversion Rates) oder dem Personalisieren von Webinhalten und Einkaufsempfehlungen längst zum Einsatz. Bei den professionellen Dienstleistern spielen das Messen und Verbessern der Kundenbindung, der Dienstleistungsqualität und der Termintreue eine wichtige Rolle, sind das doch die wettbewerbsdifferenzierenden Faktoren.

IT-Abteilungen sind zuständig

Knapp 60 Prozent der befragten Entscheider gaben an, ihre IT-Abteilung sei federführend zuständig, wenn es um ML-Projekte gehe. Den Studienautoren von Crisp zufolge liegt das an der hohen technologischen Komplexität des Themas. Neben mathematischen und statistischen Skills ist demnach auch eine große Bandbreite an Fertigkeiten im Bereich der IT-Operations gefragt. Hinzu kommen die BI- und Analytics-Fähigkeiten, die hier oftmals angesiedelt sind.

Doch auch Fachabteilungen wie Logistik und Produktion sind mit im Boot, weil sie in der Regel die Prozessverbesserungs- und IoT-Szenarien vorantreiben. Die großen Mengen an Maschinen-, Produktions-, Logistik- sowie sonstigen Sensor- und Log-Daten müssen auf Muster und Korrelationen hin abgefragt werden – eine Aufgabe für Fertigung und Logistik.

Und schließlich sind auch Kundenservice und -support führende Instanzen, wenn es um die Einführung von ML geht. Sie wollen die personalisierte Kundeninteraktion vorantreiben und sammeln in ihren Bereichen die Text-, Bild- und Audiodaten, die das Potenzial für Analysen bieten. Interessant an der Umfrage ist indes, dass Marketing und Kommunikation von ML oft nichts wissen wollen, obwohl sie reichlich Einsatzszenarien hätten. Sie könnten etwa Kundenbeziehungen auswerten und die Kundenbindung verbessern, automatisiertes Medien-Monitoring vorantreiben oder das Social Web mit Sentiment-Analysen bearbeiten. All das findet aber relativ selten statt, was Crisp Research mit der traditionell „passiven, technologieagnostischen Rolle“ dieser Abteilungen begründet. Marketing- und Kommunikationsabteilungen treten demnach meist als „Anforderer“ und interne Kunden auf, nicht als diejenigen, die tiefer in Technologien einsteigen.

Welche Machine-Learning-Funktionen benötigen Unternehmen wofür? Und wann kommen welche Lernstile, Frameworks, Programmiersprachen und Algorithmen zum Einsatz? Meistens beginnen Firmen mit Bildanalyse und -erkennung.
 
  • Bild- und Spracherkennung sind die wichtigsten Anwendungen im Bereich Machine Learning
  • Geht es um die Plattformauswahl, wird die Public Cloud zunehmend wichtig
  • Grafikprozessoren setzen sich im Bereich Deep Learning durch

Wie die Analysten von Crisp Research im Rahmen einer umfassenden Studie gemeinsam mit The unbelievable Machine Company und Hewlett-Packard Enterprise (HPE) schreiben, gibt die Mehrheit der rund 250 befragten IT-Entscheider an, mit der Bildanalyse und -erkennung in das komplexe Thema Machine Learning (ML) einzusteigen. So werden beispielsweise in Industrieunternehmen Fremdkörper auf Förderbändern identifiziert, fehlerhafte Einfärbungen von Produkten entdeckt oder von autonomen Fahrzeugen Straßenschilder erkannt.

Diese Machine-Learning-Funktionen nutzen die Anwender.
Diese Machine-Learning-Funktionen nutzen die Anwender.
Foto: Crisp Research, Kassel

 

Wichtig sind ML-Verfahren auch zur Sprachsteuerung und -erkennung (42 Prozent). Eng damit verbunden sind Natural Language Processing und Textanalyse – also das semantische Erfassen von Sprachinhalten und Texten. Heute beschäftigen sich 35 Prozent der Unternehmen damit, Tendenz steigend. Hintergrund ist, dass konversationsbasierte Benutzerschnittstellen derzeit einen Aufschwung erleben.

Chatbots, Gesichtserkennung, Sentiment-Analyse und mehr

Machine Learning kommt außerdem bei rund einem Drittel der Befragten im Zusammenhang mit der Entwicklung digitaler Assistenten, sogenannter Bots zum Einsatz. Weitere Einsatzgebiete sind Gesichtserkennung, die Sentiment-Analyse und besondere Verfahren der Mustererkennung – oft in einem unternehmens- oder branchenspezifischen Kontext. Die Spracherkennung ist vor allem für Marketingentscheider interessant, da digitale Assistenten für die Automatisierung von Call-Center-Abläufen oder die Echtzeit-Kommunikation mit dem Kunden an Bedeutung gewinnen. Auch die Personalisierung von Produktempfehlungen ist ein wichtiger Use-Case.

Ein Blick auf die Nutzungsszenarien von ML-Technologien zeigt, dass Bildanalyse und -erkennung heute weit vorne rangieren, doch die Zukunft gehört eher der Sprachsteuerung und – erkennung, ebenso der Textanalyse und Natural Language Processing (NLP). Insgesamt werden ML-Technologien auf breiter Front an Bedeutung gewinne, auch etwa im Bereich der Videoanalyse, der Sentiment-Analyse, der Gesichtserkennung sowie beim Einsatz intelligenter Bots.

Schaut man auf die einzelnen Unternehmensbereiche, so wird deutlich, dass sich die für Customer Experience Management zuständigen Einheiten ML-Technologien vor allem im Bereich der Kundensegmentierung, der personalisierten Produktempfehlung, der Spracherkennung und teilweise auch der Gesichtserkennung bedienen. IT-Abteilungen treiben damit E-Mail-Klassifizierung, Spam-Erkennung, Diagnosesysteme und das Klassifizieren von Dokumenten voran. Die Produktion ist vor allem auf Prozessverbesserungen aus, während Kundendienst und Support ihre Diagnoseysteme vorantreiben und an automatisierten Lösungsempfehlungen arbeiten. Auch Call-Center-Gespräche werden bereits analysiert, teilweise auch mit der Absicht, positive und negative Äußerungen der Kunden zu erkennen (Sentiment-Analyse).

Auch die Bereiche Finance und Human Resources sowie das Management generell nutzen vermehrt ML-Technologien. Wichtigstes Einsatzgebiet sind hier das Risiko-Management sowie Forecasting und Prognosen. Im HR-Bereich werden auch Trainingsempfehlungen automatisiert erstellt, Lebensläufe überprüft und das Talent-Management vorangetrieben. Im zentralen Einkauf und dem Management der Lieferanten ist die Digital Supply-Chain-Verbesserung das Kernaufgabengebiet von ML-technologie. Vermehrt werden hier auch Demand Forecastings ermittelt, Risiken im Zusammenhang mit bestimmten Lieferanten analysiert und generell Entscheidungsprozesse digital unterstützt.

Machine-Learning-Plattformen und -Produkte

Geht es um die Auswahl von Plattformen und -Produkten, spielen Lösungen aus der Public Cloud eine zunehmend wichtige Rolle (Machine Learning as a Service). Um Komplexität aus dem Wege zu gehen und weil die großen Cloud-Provider auch die maßgeblichen Innovatoren auf diesem Gebiet sind, entscheiden sich viele Anwender für diese Cloud-Lösungen. Während 38,1 der Befragten Lösungen aus der Public-Cloud bevorzugen, wählen 19,1 Prozent proprietäre Lösungen ausgesuchter Anbieter und 18,5 Prozent Open-Source-Alternativen. Der Rest verfolgt entweder eine hybride Strategie (15,5 Prozent) oder hat sich noch keine Meinung dazu gebildet (8,8 Prozent).

Welche Cloud-Angebote zu Machine Learning sind im Einsatz?
Welche Cloud-Angebote zu Machine Learning sind im Einsatz?
Foto: Crisp Research

 

Unter den Cloud-basierten Lösungen hat AWS den höchsten Bekanntheitsgrad: 71 Prozent der Entscheider geben an, dass ihnen Amazon in diesem Kontext bekannt sei. Auch Microsoft, Google und IBM sind den Umfrageteilnehmern zu mehr als zwei Drittel im ML-Umfeld ein Begriff. Interessanterweise nutzen aber nur 17 Prozent der befragten die AWS-Cloud-Dienste im Kontext der Evaluierung, Projektierung sowie im produktiven Betrieb für ML. Jeweils rund ein Drittel der Befragten beschäftigt sich indes mit IBM Watson, Microsoft Azure oder der Google Cloud Machine Learning Plattform.

Die Analysten nehmen an, dass dies viel mit den Marketing-Anstrengungen der Hersteller zu tun hat. IBM und Microsoft investieren demnach massiv in ihre Cognitive- beziehungsweise KI-Strategie. Beide haben einen starken Mittelstands- und Großkundenvertrieb und ein großes Partnernetzwerk. Google indes verdanke seine Position dem Image als gewaltige daten- und Analytics-Maschine, die den Markt durch viele Innovationen treibe – etwa Tensorflow, viele ML-APIs und auch eigene Hardware. Schließlich zähle aber auch HP Enterprise mit „Haven on Demand“ zu den relevanten ML-Playern und werde von 14 Prozent der Befragten genutzt.

Deep Learning ist schwieriger

Bereits in den 40er Jahren des vergangenen Jahrhunderts wurden die ersten neuronalen Lernregeln beschrieben. Die wissenschaftlichen Erkenntnisse wuchsen rasch, die Anzahl der Algorithmen ebenfalls – doch es fehlte an der notwendigen Rechenleistung, um „Rückgekoppelte Neuronale Netzwerke“ in der Fläche zu nutzen. Heute sind diese unter dem Begriff Deep Learning in aller Munde, sie könnten Bereiche wie Handschriftenerkennung, Spracherkennung, maschinelles Übersetzen oder auch automatische Bildbeschreibungen revolutionieren.

Hintergrund ist, dass eine Präzision erreicht werden kann, die menschliche Fähigkeiten im jeweiligen Zusammenhang weit übertrifft. Dabei spannen neuronale Netze Ebenen von unterschiedlicher Komplexität auf. Je mehr Daten so einem neuronalen Netz zum Trainieren zur Verfügung stehen, desto besser werden die Ergebnisse beziehungsweise die trainierte Künstliche Intelligenz. So lernt ein System beispielsweise, wie anhand einer Computer-Tomografie Krebsgeschwüre diagnostiziert werden können, die das menschliche Auge nicht so einfach sieht.

Grafikprozessoren bieten die nötige Performance

Im Bereich des Deep Learning haben sich hardwareseitig Grafikprozessoren (GPUs) wegen ihre hohen Performance als besonders geeignet erwiesen. Förderlich waren außerdem die schier unbegrenzte Rechenpower, die sich aus den Public-Cloud-Ressourcen ergibt, sowie die Verfügbarkeit großer Mengen von Daten aus den verschiedensten Anwendungsgebieten. Unternehmen nutzen bereits Deep-learning-Algorithmen, im bestimmte Merkmal in Bildern aufzuspüren, Videoanalysen vorzunehmen, Umweltparameter beim autonomen Fahren zu verarbeiten oder automatische Sprachverarbeitung voranzutreiben.

In der Crisp-Umfrage geben 48 Prozent der Teilnehmer an, von Deep Learning zumindest gehört oder gelesen zu haben. Weitere 21 Prozent sind bereits in einer konkreten Evaluationsphase. Sie haben Erkenntnisse gesammelt und arbeiten nun an konkreten Prototypen, um ihr gewünschtes Einsatzszenario zu validieren. Weitere fünf Prozent sind sogar noch einen Schritt weiter und haben bereits Deep Learning im Einsatz. Vor allem Startups und Konzerne – auch hier wieder vor allem aus dem Automotive-Sektor – haben hier die Nase vorn.

Unter den Frameworks und Bibliotheken, die für das Implementieren von Deep-Learning-Algorithmen eine Rolle spielen, spielen unter anderem Microsofts „Computational Network Toolkit“ (CNTK) sowie jede Menge Public-Cloud- und Open-Source-Lösungen eine Rolle (eine Übersicht gibt es hier http://deeplearning.net/software_links/).

Machine Learning macht Analysen besser

Zuerst analysierten lernende Maschinen das Nutzerverhalten in Suchmaschinen, um passende Werbung anzuzeigen. Heute optimieren sie Verkehrsflüsse, die Stahlherstellung und planen die Flugzeugwartung. Experten von Allianz, Trip Advisor, GfK und Boeing erklären, wie ihnen Machine Learning hilft.

http://www.computerwoche.de/a/machine-learning-soll-analysen-besser-machen,3217540

Bei der Münchener Allianz Versicherung ist Andreas Braun, Head of Global Data and Analytics, zufrieden mit den Ergebnissen seiner Experimente mit den neuen Analytics-Ansätzen aus der künstlichen Intelligenz. „Wir haben bei uns ein Ökosystem aus verschiedenen Bestandteilen im Einsatz. Big-Data-Technologien und Machine Learning bieten uns bessere Möglichkeiten, mit unseren Daten umzugehen, und liefern konsistent gute Ergebnisse“, sagte er auf der Konferenz der Yandex Data Factory zum Thema „Machine Learning and Big Data“ in Berlin. Zum Beispiel im Gebäude-Management: Zusammen mit Studenten der TU München hat die Versicherung eine App entwickelt, die eine Vielzahl von Gegenständen über Sensoren vernetzt.

„Das System kalibriert sich selbst, lernt normales Verhalten im Haus, und kann so einen Einbruch von anderen ungewöhnlichen, aber unkritischen Vorfällen unterscheiden.“ Außerdem wollen die Experten die Bilderkennung weiter verbessern. Eingereichte Fotos sollen bei Versicherungsschäden automatisch durch Maschinen beurteilt werden.

Die Experten, die der russische Suchmaschinen-Anbieter Yandex nach Berlin eingeladen hatte, tauschten sich unter dem Motto „Business Challenges“ auch über die Schwierigkeiten und Risiken rund um Machine Learning aus. Jeff Palmucci, Director of Machine Intelligence beim Reiseportal Trip Advisor, schilderte, wie sein Unternehmen maschinelles Lernen in die Geschäftsprozesse implementiert. So hilft die Technik, Restaurants und Hotels automatisiert mit passenden Tags wie „romantisch“ oder „charmant“ zu versehen, damit Suchende schnell das richtige Angebot finden. Auch um Betrug etwa bei den Bewertungen rasch zu erkennen, setzt das Portal Machine Learning ein.

Menschliches Verhalten vorhersagen

Machine Learning stellt Unternehmen vor vielfältige Herausforderungen. Nicht alle Branchen eignen sich gleich gut, erklärte Jane Zavalishina, CEO der Yandex Data Factory: „Es geht vor allem darum, menschliches Verhalten vorherzusagen.“ Bei Ergebnissen, die auf Machine Learning basieren, könne man aber durch die hohe Komplexität und die großen Datenmengen nie genau nachvollziehen, wie sie zustande gekommen sind. In der Praxis müsse man mit den Empfehlungen experimentieren, um herauszufinden, ob sie der bisherigen Vorgehensweise überlegen sind. Das gehe aus ethischen und praktischen Gründen allerdings nicht immer.

Jane Zavalishina CEO, Yandex Data Factory „Viele Unternehmen befinden sich aber noch an dem Punkt, an dem sie versuchen, Big Data Analytics überhaupt zu verstehen.“
Jane Zavalishina CEO, Yandex Data Factory „Viele Unternehmen befinden sich aber noch an dem Punkt, an dem sie versuchen, Big Data Analytics überhaupt zu verstehen.“
Foto: Yandex

In Echtzeit Web-Inhalte zu personalisieren oder Vorhersagen zu treffen, ist für die russische Suchmaschine Yandex nichts Neues. Das Wissen des Konzerns, das aus der Suchtechnik und dem kontextuellen Einspielen passender Werbung entstanden ist, und die dafür entwickelten Algorithmen stellt sie seit 2014 auch extern zur Verfügung. Zunächst probierte das Tochterunternehmen Yandex Data Factory, das Firmensitze in Moskau und Amsterdam unterhält, die Techniken maschinellen Lernens in der Wissenschaft aus – zum Beispiel, um Big-Data-Probleme des europäischen Kernforschungszentrums CERN zu lösen.

Inzwischen besprechen die Datenexperten mit Firmen, die viele Kunden und große Datenmengen haben, wie sich deren Services, Prozesse und Produkte ver­bessern lassen. „Die Anwendungsmöglichkeiten für maschinelles Lernen in Unternehmen sind fast unbegrenzt“, sagte Zavalishina. „Viele Unternehmen befin­den sich aber noch an dem Punkt, an dem sie versuchen, Big Data Analytics überhaupt zu verstehen.“

Eine der ersten Firmen, die Wissen und Technologie von Yandex nutzte, war die russische Straßenverwaltungsbehörde Rosavtodor, die Vorhersagen zur Verkehrsdichte und zu Unfällen benötigte. Im Stahlwerk Magnitogorsk Iron and Steel Works optimieren heute Algorithmen die Stahlproduktion. Zu wenige Zusätze ergeben eine schlechte Qualität, zu viele treiben die Kosten in die Höhe. Bisher nutzten die Stahlkocher für ihre Mischungsvorhersagen komplizierte Modelle. Yandex Data Factory verwendete zur Optimierung historische Daten aus den zurückliegenden zehn Jahren. Vergleichsweise einfach scheint es dagegen, mit Machine Learning Websites zu optimieren und Online-Werbung auszusenden.

Business ist datengetrieben

„Wir sind ein komplett datengetriebenes Business“, sagt Norbert Wirth, Global Head of Data and Science beim Marktforschungsinstitut GfK, „Machine-Learning-Algorithmen sind für uns ein Werkzeug im Kanon mit anderen, das aber für die Vorhersage und für Klassifizierungsprobleme zunehmend wichtiger wird.“ GfK nutzt es derzeit vor allem für die Analyse von Social-Media-Daten und um Marktanteile und Marktperformance vorherzusagen.

„Wir setzen es ein, wenn nicht die Frage nach dem Warum entscheidend ist, sondern die Qualität der Vorhersage“, so Wirth. Sind Aussagen über eine Marke tendenziell eher positiv oder negativ? Und um welche Themen geht es? Bei kleineren Datenbeständen könne man das noch selbst herausfinden, wird es jedoch umfangreicher, seien die Algorithmen „extrem spannend – und sie werden immer leistungsfähiger“. Das sei kein Hype, sagt der Marktforscher, „Machine Learning wird an Bedeutung zunehmen. Mit wachsender Computerpower kann man damit jetzt wirklich arbeiten.“ Die eine Sache sei ein toller Algorithmus, die andere, ob man die dafür nötigen Maschinen auch am Start habe.

In Zukunft werden Analysten laut Wirth zusätzliche Daten verwenden, um Algorithmen zu trainieren und die Modelle leistungsfähiger zu machen. „Es geht in die Richtung, im Analyseprozess mit mehreren Datenquellen zu arbeiten. Natürlich mit solchen, die auch legal genutzt werden dürfen.“ Data Privacy sei ein sehr wichtiges Thema rund um Machine Learning – aber auch die Stabilität und die Qualität der Daten.

Der Flugzeughersteller Boeing nutzt Machine Learning, um seine Services und die interne Produktion zu verbessern, berichtete Sergey Kravchenko, President Russia and CIS von Boeing. Das Flugzeug 787 verfüge über mehr als zehntausend mit dem Internet verbundene Sensoren, die den Mechanikern am Boden schon während des Fluges melden, wenn zum Beispiel eine Lampe oder eine Pumpe ausgetauscht werden muss. So können Fluggesellschaften ihre Wartungskosten reduzieren und im Betrieb effizienter arbeiten.

Boeing arbeitet mit Big Data und Machine Learning, um den Fluggesellschaften mit den während eines Flugs gesammelten Daten zu helfen, Treibstoffkosten zu senken und die Piloten bei schlechtem Wetter zu unterstützen. Nun werden die Daten auch in der Produktion verwendet, um etwa für bestimmte Prozesse die besten Ingenieure zu finden. Daten der Personalabteilung würden genutzt, um zu verstehen, wie die Lebensdauer und die Qualität der Flugzeuge mit dem Training und der Mischung der Menschen im Produktionsteam korrelieren. Gibt es bei Prozessen, die aufwendige Nacharbeiten erfordern, Zusammenhänge mit den bereitgestellten Werkzeugen oder mit dem Team? Kravchenko will mit Big-Data-Analysen den gesamten Zyklus von Design, Produktion und Wartung verbessern.

Ein neues Big-Data-Projekt ist die Flight Training Academy, die 2016 eröffnet werden soll. Hier werden Daten der drei Flugsimulatoren gesammelt und ausgewertet, um die Gestaltung des Cockpits und das Design der Flugzeug­software zu verbessern. Kravchenko will seinen russischen Kunden auch anbieten, in Zukunft Daten auszutauschen und sie gemeinsam auszuwerten.

Experten müssen zusammenpassen

Die Fertigungsindustrie stehe bei der Anwendung von Machine Learning – verglichen etwa mit Telcos und dem Handel – noch am Anfang. Sie werde aber schnell von ihnen und auch von Firmen wie Amazon und Google, lernen. Wer Erfolg haben wolle, müsse die besten Flugzeug- und IT-Experten zusammenbringen. Das Problem: „Die kommen von verschiedenen Planeten.“

Die Zusammenarbeit kann dennoch gelingen – wenn sich alle auf eine gemeinsame Terminologie einigen. „Die Datenexperten müssen etwas mehr von Flugzeugen und Airlines verstehen und die Flugzeugspezialisten mehr über Data Analytics lernen. Sie müssen sich die Werkzeuge teilen, sich gegenseitig vertrauen und ein gemeinsames Team aufbauen“, sagt der Flugzeugbauer. Ein weiteres Problem sei die Relevanz der Daten. „Hier muss die Industrie ihre riesigen Datenmengen anschauen und entscheiden, welche Daten wirklich wichtig sind, um bestimmte Probleme zu lösen. Das ist nicht einfach, dafür brauchen wir Zeit, Trial and Error, und wir müssen von anderen Branchen lernen.“ Die richtige Auswahl der Daten und die Interpretation der Ergebnisse seien dabei wichtiger als der Algorithmus selbst.

Google built its own computer chip specifically for running deep neural networks, called the Tensor Processing Unit, or TPU

Cyber Attacks get worse in 2017

cyber-attack

Image Credit: SWEviL/Shutterstock

It was speculated 2016 would see even more cybersecurity activity than 2015, and it did not disappoint. Consider the $81 million stolen from Bangladesh Bank, the 500 million accounts swiped from Yahoo, or the 19,000 emails leaked from Democratic Party officials in the run-up to the election. Not to mention the IoT-powered botnets launching record-breaking DDoS attacks that have brought down major parts of the Internet.

But, in reality, this year’s cyber-attack headlines offer just a glimpse of a cyber war between hackers and security personnel that is being waged on a grand scale every day. More than anything, they are harbingers of worse to come.

Here are some of the escalated challenges we will face in 2017.

1. Attackers won’t just steal data — they will change it

Today’s savvy attackers are moving away from pure data theft and website hacking to attacks that have a subtler target: data integrity. They will use their ability to hack information systems not just to make a quick buck but also to cause long-term, reputational damage to individuals or groups through the erosion of trust in the data itself.

In the past six months alone, we’ve seen attacks like the DNC and Yahoo breaches, which focused on influencing political and economic public opinion, rather than simply gaining a profit. And the hackers aren’t done yet – the Russian group thought to be behind the election-related breaches is moving on to Germany’s elections next, according to a recent statement.

The scenario is particularly worrying for industries that rely heavily on public confidence. In fact, data from the analysis of SEC disclosures found 83 percent of publicly traded companies worry most about risk of brand damage via hacks. But it’s not just them. A laboratory that cannot vouch for the fidelity of medical test results, or a bank that has had account balances tampered with, are examples of organizations at particular risk. Governments, as pointed out above, may also suffer significant damage from such attacks, as critical data repositories are altered and public distrust in national institutions rises.

We’re also seeing this kind of manipulation at smaller scale. For example, we were deployed in a manufacturing firm that used biometric scanners to restrict access to their machinery and industrial plants. We noticed an unusual Telnet for a biometric scanner that was hooked to the corporate network. After further investigation, we found that legitimate data was being altered – quite possibly to add new fingerprints. This type of manipulation, had it not been detected early, would have have let attackers right in through the front door.

While some of the recent breaches and the result of this year’s U.S. presidential election may seem straight out of a movie, tomorrow’s cyber-attacks will make it harder than ever to parse fact from fiction.

2. Consumer devices will be held for (cyber) ransom

Ransomware, like Cryptolocker, has plagued companies around the world — experts reckon these attacks have increased fivefold in 2016 alone. They encrypt critical files at a speed that is virtually impossible to keep up with and leave companies facing hefty fees for their release.

Hospitals have suffered particularly at the hands of ransomware attacks. They are prime targets, as they have become digital jungles full of everything from life-saving medical equipment and critical patient records to patient devices and staff computers — all with cyber defenses that have failed to keep pace. The result is organizations that pay up. Hollywood Presbyterian Medical Center in Los Angeles paid the equivalent of $17,000 in Bitcoin to extortionists after its computers were taken offline for over a week.

In 2017 and beyond, we will start to see the beginning of a new type of extortion on a micro level, as consumers are targeted across a range of connected objects. Imagine getting home and turning on your smart TV only to find that cybercriminals are running a ransomware attack on your device. Would you pay $50 to unlock it? Or what if the new GPS system in your car got hacked when you were late for a meeting — how much would you pay to unlock it?

3. Artificial intelligence will be a weapon

Artificial intelligence is exciting for many reasons — self-driving cars, virtual assistants, better weather forecasting, the list goes on. But attackers will use AI to wield highly sophisticated and persistent attacks, attacks that blend into the noise of busy networks.

We have already seen the first glimpses of attacks going this direction in automated polymorphic and metamorphic malware. Polymorphic malware, which changes its attributes mid-attack to evade detection, has reinforced the obsoleteness of signature-based detection methods. It self-learns and understands its environment and network before choosing its next action. Automation has also been a major factor in the resurgence of ransomware. We can anticipate that artificial intelligence threats will be similar. Imagine a piece of artificially intelligent malware sitting silently on a network, observing its surroundings and learning how to disguise itself. If it understands how to completely blend in with the background noise of a network, could it ever be detected?

The next generation of AI-powered attacks to emerge will use customized code to emulate the behaviors of specific users to fool even skilled security personnel. This includes the ability to craft sophisticated and bespoke phishing campaigns that will successfully dupe even the most threat-conscious employee.

Earlier this year, we were deployed in a charity in California for a proof-of-value. One day, a receptionist received an email containing a fake invoice, supposedly coming from a stationary supplier known to the company. The receptionist opened the attachment, as she recognized the company, and typically handled many invoices per day. As soon as she clicked the attachment, her computer immediately connected to a server in Ukraine and downloaded a malware that rapidly began encrypting files. This will only get worse with “smart” malware driving attacks specifically tailored for their victims.

Next year’s attackers can see more than your social media profile. They’ll know that your 10 a.m. meeting with your supplier is being held at its new headquarters. At 9:15 a.m., an email with the subject line “Directions to our office” arrives in your inbox, apparently from the person you are meeting, as you get off the train. Do you click the map link in the email?

 

http://venturebeat.com/2016/12/11/heres-how-cyber-attacks-get-worse-in-2017/

Will IBM be your AI and machine learning platform?

Here’s how IBM got its start in artificial intelligence, and what it brings to the table for your business or organization.

watsonceo.jpg
IBM CEO Ginni Rometty and IBM Watson Group Senior VP Mike Rhodin.

Image: IBM

Of all the tech giants throwing their weight behind artificial intelligence (AI) and machine learning, few receive the kind of attention garnered by IBM. After its seminal Jeopardy win in 2011, IBM Watson became synonymous with technologies such as cognitive computing and AI.

Upon losing to Watson, former Jeopardy champion Ken Jennings famously wrote „I, for one, welcome our new computer overlords“ under one of his responses. All of a sudden, Watson was a household name, igniting conversations about what could be accomplished with AI.

While Watson is a major part of IBM’s approach to AI solutions, it’s only a piece of the puzzle. Here’s a deeper look at the bigger picture, so businesses can determine if IBM is the right AI vendor for their needs.

The history

IBM Research, the company’s research division, dates back to 1945, when it opened the Watson Scientific Computing Laboratory at Columbia University. IBM’s work in AI began in the 1950s, according to its website. Around that time, an IBM employee named Arthur Samuel wrote a self-learning program for playing checkers, and would later be recognized as a pioneer in AI and machine learning.

In the 1970s, IBM built its first robot, and advanced its work in the field in the 1980s with the IBM RS 1. In the 1990s, IBM Researcher Gerry Tesauro used reinforcement learning (RL) to create a self-learning game of backgammon. Then, in 1997, IBM’s Deep Blue computer famously beat World Chess Champion Garry Kasparov at chess.

The company’s development of actual AI products began more recently. Mike Gualtieri, of Forrester Research, said that IBM’s journey toward AI solutions began in 2009, when it acquired two companies: ILOG and SPSS. ILOG is a business rules engine, Gualtieri said, which used to be called an expert system, while SPSS provides advanced analytics. Both of these purchases helped jumpstart IBM’s work on AI solutions for businesses.

Today, IBM’s AI initiatives are centered around the Watson platform. IBM has Watson solutions for analytics and machine learning, data search and discovery, and conversation tools like chat bots.

The vision

IBM views AI as „augmented intelligence,“ said Guru Banavar, vice president and chief science officer for cognitive computing at IBM Research. To take that concept a little further, 451 Research analyst Nick Patience explained augmented intelligence as „AI — and machine learning in particular — acting as a force multiplier for humans.“

Currently, Banavar said, there are „thousands“ of engineers working on the Watson platform. On a high level, the team is split into two very distinctive camps. One on end of the spectrum is a group working on „very concrete, commercial development and deployment,“ which happens usually on a weekly, monthly, or quarterly basis.

„Then, at the other end of the spectrum, we have teams of people that are working on advanced new technologies — some of which are being invented — all the way up to mathematicians who are developing the underlying techniques for them,“ Banavar said.

After Watson won Jeopardy, Banavar said the team at IBM was focused on building custom systems for specific clients or industry niches. However, they recently had to make a conscious strategic decision to move away from that model to focus on APIs.

Banavar said that IBM realized it wouldn’t be possible to build out all of the applications they wanted to with their existing strategy. So, they turned some of their capabilities into a platform with open APIs, „in order to attract and nurture a larger ecosystem of developers that can build many applications that IBM cannot build by ourselves,“ Banavar said.

Those APIs are being put to use in areas like retail, finance, law, and even fantasy football. But healthcare is one of the primary focuses for Watson solutions.

„I could see a vision where every hospital, every clinical group, had this Watson service. It becomes as essential as an X-ray, as essential as an MRI,“ Gualtieri said. „So, I think that’s their vision. They’re putting a lot against that.“

Strengths

To understand whether or not IBM would be a good fit for your organization, you must weigh your company’s needs against IBM’s strengths. On the technical side of things, Banavar said, these strengths start with Watson’s language capabilities.

„Watson has image processing capabilities, speech processing capabilities, regular numerical data analytics capabilities across the board — we have the entire spectrum,“ Banavar said. „But, if you ask me what is a really unique, and probably the most advanced, capability in Watson, it is language processing.“

When it comes to business, IBM’s AI strength comes from three key elements: IBM Research, its acquisition prowess, and its consultants.

IBM Research may not always produce a breakthrough, but it does give the company a distinctive edge, said Gualtieri. „The advantage of that is that the largest companies in the world — who IBM wants to sell to — want that edge,“ he added.

The ability to acquire the right companies to broaden its portfolio of offerings is a key differentiator for IBM. Banavar noted that the company has also been leveraging open-source libraries and toolkits to make use of new techniques in neural networking, word embedding, and more.

In addition to its research prowess and acquisition budget, IBM has a large network of consultants. According to Patience, that is key, „because a lot of the early machine learning opportunities involve taking enabling technologies such as machine learning algorithms and turning them into enhanced business processes and applications; something IBM understands well.“

Challenges

One of the biggest challenges facing IBM is managing the expectations that come from terms like cognitive computing and AI. This is further compounded by the public-facing nature of Watson, especially in the wake of its Jeopardy win, and confusion around the capabilities of AI as well.

„Everyone thinks that we’re on the verge of Star Trek, like next week,“ Gualtieri said. So, IBM must have a grand and transformative vision about the future of AI, but they also have to keep the expectations in check so customers don’t regret moving forward, Gualtieri noted.

On the question of safety and ethics, many would share Gualtieri’s view that the technology „is not even close to getting to the point where ethical issues are really a serious concern.“ However, Banavar said that ethical challenges are still something the IBM team must consider.

The first crucial issue that must be addressed, Banavar said, is the idea of explainability. If a doctor or financial advisor uses Watson to make a decision, for example, they must be able to understand why Watson chose a particular solution or set of options.

The other ethical consideration is bias. With machine learning systems, the models are built with training data — but the data has to faithfully represent what you’re trying to model, or it could be biased, Banavar said. Because of that, selecting the proper training data set is an ethical decision of the utmost importance. This is made even more important by how broad a potential impact Banavar sees for AI technologies.

„At the end of the day, I do think that cognitive computing is necessary for us to solve the world’s big problems,“ Banavar said.

http://www.zdnet.com/article/should-ibm-be-your-ai-and-machine-learning-platform

Samsung Plans To Give Galaxy S8 An AI Digital Assistant

All the cool companies have them: digital assistants. Apple has Siri, Microsoft has Cortana, and Google  has the cleverly named Google Assistant. Now, Samsung plans to bring its own iteration of a virtual assistant in the Galaxy S8 next spring, according to a new report from Reuters.

The assistant will be based on work by Viv Labs, a San Jose-based AI company that Samsung acquired this October (the move immediately fueled speculation that Samsung was moving into the AI space). The founders of Viv Labs already have a strong track record in the field as the creators of Siri, which Apple bought in 2010.

Samsung appears to be tapping into Viv’s existing strengths rather than aiming to revamp the platform. One of Viv’s hallmarks is that it is designed to be a one-stop-shop that works seamlessly with third-party services. “Developers can attach and upload services to our agent,” Samsung Executive Vice President Rhee In-jong said during a briefing, according to Reuters. “Even if Samsung doesn’t do anything on its own, the more services that get attached the smarter this agent will get, learn more new services and provide them to end-users with ease.”

If the digital assistant is a hit, it could help Samsung make up for its financial losses over the Galaxy Note 7 recall, which is projected to cost the company at least $5.4 billion. It could also rebuild consumer confidence after the Note 7 debacle and, more recently, a recall of a Samsung top-loading washing machine due to “impact injuries.”

But the company is entering a crowded market. Apple paved the way with Siri, though its early lead is shrinking after the launch of Google’s Assistant, which can tap into Google’s well-established knowledge graph and search capabilities. And there’s always Amazon Alexa, which already has a home in the smart-home devices the Echo, Dot and Tap.

„Every door can be unlocked.“  Ellen Fondiler

http://www.forbes.com/sites/shelbycarpenter/2016/11/06/samsung-plan-galaxy-s8-ai-digital-assistant